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where we used the inequality %(e" +e™*) <e2¥ for all real x, which can be checked
using power series expansions. Since the same argument is also valid for —Y a;r;(t),
we obtain that
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From this it follows that
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and hence we obtain the distributional inequality
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by picking p = «. The L? norm of F can now be computed easily. Formula (1.1.6)

gives
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We have now proved that
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under assumptions (a), (b), and (c).

We now dispose of assumptions (a), (b), and (c). Assumption (b) can be easily
eliminated by a limiting argument and (c) by a scaling argument. To dispose of
assumption (a), let a; and b; be real numbers. For p > 2 we have
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Let us now set A, = Z(pF(p/Z))]/P when p > 2. Since we have the trivial esti-
mate HFHLP < HFHL2 when 0 < p < 2, we obtain the required inequality ||FHU, <
g vt
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1 when 0 < p <2,
Ay =

2p7 (p)2) when 2 < p < oo,



