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for all real x, which can be checked
using power series expansions. Since the same argument is also valid for−∑a jr j(t),
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From this it follows that
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by picking ρ = α . The Lp norm of F can now be computed easily. Formula (1.1.6)
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under assumptions (a), (b), and (c).
We now dispose of assumptions (a), (b), and (c). Assumption (b) can be easily

eliminated by a limiting argument and (c) by a scaling argument. To dispose of
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Let us now set Ap = 2
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)1/p when p > 2. Since we have the trivial esti-
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