580 B Bessel Functions

Estimating the two integrals on the right by putting absolute values inside and mul-
tiplying by the missing factor r¥27V(I"(v + $)I"(3)) !, we obtain
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since the absolute value of the argument of >+ 2if is at most /2. When Re v > 1/2,

we use the inequality (v7Z+4)ReV=2 < 2Rev—; (tRe"’% + 2Re"’%) to get
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These estimates yield that for Rev > —1/2 and r > 1 we have
o(7)] < C1 (Rev) e (mss((Revd) 2 Reve) )3 v 172

using the result in Appendix A.7, where C; is a constant that depends smoothly on
ReV on the interval (—1/2,00).

B.8 Asymptotics of Bessel Functions

We obtain asymptotics for J,(r) as r — e whenever Rev > —1/2. We have the
following identity for r > 0:

and satisfies Ry (r)| < Cy r~3/? whenever r > 1.



