
580 B Bessel Functions

Estimating the two integrals on the right by putting absolute values inside and mul-
tiplying by the missing factor rν 2−ν(Γ (ν + 1
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since the absolute value of the argument of t2±2it is at most π/2. When Reν > 1/2,
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When 1/2≥ Reν >−1/2 we use that
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These estimates yield that for Reν >−1/2 and r ≥ 1 we have
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using the result in Appendix A.7, where C1 is a constant that depends smoothly on
Reν on the interval (−1/2,∞).

B.8 Asymptotics of Bessel Functions

We obtain asymptotics for Jν(r) as r → ∞ whenever Reν > −1/2. We have the
following identity for r > 0:
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where Rν is given by
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and satisfies |Rν(r)| ≤Cν r−3/2 whenever r ≥ 1.


