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As an application we take f (x) = χB(0,1)(x), where B(0,1) is the unit ball in Rn. We
obtain
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in view of the result in Appendix B.3. More generally, for Reλ >−1, let
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using again the identity in Appendix B.3.

B.6 Bessel Functions of Small Arguments

We seek the behavior of Jk(r) as r→ 0+. We fix ν ∈ C with Reν > − 1
2 . Then we

have the identity

Jν(r) =
rν

2νΓ (ν +1)
+Sν(r) ,

where

Sν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
(eirt −1)(1− t2)ν− 1

2 dt

and Sν satisfies

|Sν(r)| ≤
2−Reν rReν+1

(Reν + 1
2 ) |Γ (ν + 1

2 )|Γ ( 1
2 )

.

To prove this estimate we note that
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where we evaluated the last integral using the result in Appendix A.4. Using that
|eirt −1| ≤ r|t|, we deduce the assertion regarding the size of |Sν(r)|.


