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connection of this sort. The following is a general theorem saying that any vector-
valued inequality is equivalent to some weighted inequality. The proof of the the-
orem is based on a minimax lemma whose precise formulation and proof can be
found in Appendix H.

Theorem 7.5.8. (a) Let 0 < p < q,r < co. Let {T}}; be a sequence of sublinear
operators that map LI([) to L'(v), where 1 and v are arbitrary measures. Then
the vector-valued inequality
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holds for all f; € L1(p) if and only if for every u > 0 in L7r (v) there exists U > 0
in L77 (1) with
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(b) Let 0 < q,r < p <o, r > 5, and let {T;}; be as before. Then the vector-valued
inequality (7.5.23) holds for all fj € L1(p) if and only if for every u > 0 in = (u)
there exists U > 0 in L7 (v) with
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sup/|Tj(f)|pU dv < C"/|f|"u du forall feL9().
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Proof. We begin with part (a). Given f; € LY(R", i), we use (7.5.24) to obtain

|(zimer)’
J

v = IEBUP
I u - P (/RnDT (f7) pudv)

- el oz, <1 (/anfj|pUd[J)

SuP CHZ|f/|p

A\
»
[=1
o
a

IN

s HUII”

cu(zwﬁ

IN
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which proves (7 5.23) with the same constant C as in (7.5.24). To prove the converse,
we fix u € L™ P( ), u >0, with H”HL,T,; =1and fix f € LI(u). We define sets

A:{aeL%(u):asz’}, B:{beLﬁ(u):bzo ||bHLp<1}.

Clearly A is a convex subset of L7 and B is the unit ball of L7 = (LT’ )* which

is weak™ compact and convex. For a fixed j we define the bilinear functional & on

A x B by .
®(a,b) = / IT(f)|7 udv —C”/abdu.

Then @(-,b) is linear (hence concave) on A for any b € B. Moreover, for any a € A,

P(a, -) is linear (hence convex) and continuous (hence lower semicontinuous) on B

in the weak™ topology, since if by — b in B, then

/abkdu N /abdu as k —» oo

forany a € Lh. Thus the minimax lemma in Appendix H is applicable. This gives

minsup ®(a,b) = supmin P(a,b). (7.5.26)
bEB ;A acA bEB

Holder’s inequality and the fact for all @ € A we have —a < —|f|” yields

supmlnd)(a b) <||IT;(NIP]] =
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by (7.5.23) applied to the sequence (---,0, f,0,...) with f in the j th spot. It fol-
lows from (7.5.26) that minpepsup,c4 P (a,b) < 0. Thus there exists U € B (with
||UHLpg <1l= Hu|| ;) such that @(a,U) < 0 for every a € A. Since |f] € A we

have sup; @(|f|,U) § 0 which yields (7.5.24) when ||uHLq = 1. The general case
follows by scaling u. This completes the proof of part (a).

The proof of part (b) is similar. Using the result of Exercise 7.5.1 and (7.5.25),
given f; € L(R", ) we have
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To prove the converse direction in part (b), given a fixed u > 0 in L7 (u) with
H HLW =1, we define sets and

A={acLi(u):a>|fl"}, B={beLr7(v): b>0, Ibll =, <1}

r

Asr> 5, - > 1and so Bis is weak” compact as the unit ball of L7 = (L%7)*,
We also define a functional ¥ on A X B by setting

W(a,b) — /|Tj(f)|l’b*1dv—Cﬁ/au*Idu.

Then ¥(-,b) is linear (hence concave) on A for any b € B. Moreover, for any a
in A, ¥(a, -) is convex on B. To prove that ¥ is lower semi-continuous on B with
respect to the weak™ topology, we must show that the set S ={b € B: ¥(a,b) <K}
is closed in the weak™ topology for any K € R. But S is convex, so this assertion

is equivalent to that S is closed in the norm topology of L (v). If by € B and
1o — b”Lp'%r — 0, then by, — b a.e. for some subsequence. Fatou’s lemma now
implies ¥(a,b) < liminf;_.. by, ¥ (a,by,) < K, thus b € S and so S is closed in the
norm topology. The minimax lemma in Appendix H is applicable and yields (7.5.26)
with ¥ in place of @. Holder’s inequality and Exercise 7.5.1 with s = 1% yield

%upmm‘P(a b) <|||T;(f r —C”/|f\”u71du
acA bEB L7 (v)
< \\T.f(.f)II”r(v) —cif1l, ., <O

where the middle inequality is based on Exercise 7.5.1 with s = £ and the last one
is a consequence of (7.5.23). Using (7.5.26), we obtain min,epsup,, ¥ (a,b) <0,
and this implies the existence of U in B (with HU|| < 1= ||uH 4 ) such that

¥(a,U) <0forall a € A. Since |f] lies in A we have sup ¥(a,U) < 0 Wthh yields
(7.5.25) when ||u]| i = 1. The general case follows by scaling u. This completes

the proof of part (b) (|

Example 7.5.9. We use the previous theorem to obtain another proof of the vector-
valued Hardy-Littlewood maximal inequality in Corollary 5.6.5. We take T; = M
for all j. Forgivenl<p<q<ooanduinL# we sets:# and U =
|M|| ;L ;s M(u). In view of Exercise 7.1.7 we have
[Vl <Nl and [ M(pyudr<cr [ (firuds.
R" R”
Using Theorem 7.5.8, we obtain
1 1
[Ty, < Cuna| (T,
J J

whenever 1 < p < g < oo, an inequality obtained earlier in (5.6.25).

(7.5.27)

It turns out that no specific properties of the Hardy-Littlewood maximal function
were used in the preceding inequality, and one could obtain a general result along
these lines.



