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connection of this sort. The following is a general theorem saying that any vector-
valued inequality is equivalent to some weighted inequality. The proof of the the-
orem is based on a minimax lemma whose precise formulation and proof can be
found in Appendix H.

Theorem 7.5.8. (a) Let 0 < p < q,r < !. Let {Tj} j be a sequence of sublinear
operators that map Lq(µ) to Lr(!), where µ and ! are arbitrary measures. Then
the vector-valued inequality
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(b) Let 0 < q,r < p < !, r > p
2 , and let {Tj} j be as before. Then the vector-valued
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Proof. We begin with part (a). Given f j ↑ Lq(Rn,µ), we use (7.5.24) to obtain

∥∥∥
(
∀

j
|Tj( f j)|p

) 1
p
∥∥∥

Lr(!)
=

∥∥∥∀
j
|Tj( f j)|p

∥∥∥
1
p

L
r
p (!)

= sup
↗u↗

L
r

r↔p
→1

(∫

Rn ∀
j
|Tj( f j)|p ud!

)1
p

→ sup
↗u↗

L
r

r↔p
→1

C
(∫

Rn ∀
j
| f j|p U dµ

)1
p

→ sup
↗u↗

L
r

r↔p
→1

C
∥∥∥∀

j
| f j|p

∥∥∥
1
p

L
q
p (µ)

↗U↗
1
p

L
q

q↔p

→ C
∥∥∥
(
∀

j
| f j|p

) 1
p
∥∥∥

Lq(µ)
,



556 7 Weighted Inequalities

which proves (7.5.23) with the same constant C as in (7.5.24). To prove the converse,
we fix u ↑ L

r
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L
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is weak↘ compact and convex. For a fixed j we define the bilinear functional ∀ on
A≃B by
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Then ∀( · ,b) is linear (hence concave) on A for any b ↑ B. Moreover, for any a ↑ A,
∀(a, ·) is linear (hence convex) and continuous (hence lower semicontinuous) on B
in the weak↘ topology, since if bk ⇐ b in B, then∫
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Hölder’s inequality and the fact for all a ↑ A we have ↔a →↔| f |p yields
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by (7.5.23) applied to the sequence (· · · ,0, f ,0, . . .) with f in the j th spot. It fol-
lows from (7.5.26) that minb↑B supa↑A ∀(a,b) → 0. Thus there exists U ↑ B (with
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follows by scaling u. This completes the proof of part (a).

The proof of part (b) is similar. Using the result of Exercise 7.5.1 and (7.5.25),
given f j ↑ Lq(Rn,µ) we have
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To prove the converse direction in part (b), given a fixed u ↓ 0 in L
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We also define a functional # on A≃B by setting

#(a,b) =
∫

|Tj( f )|p b↔1 d! ↔Cp
∫

au↔1 dµ.

Then #( · ,b) is linear (hence concave) on A for any b ↑ B. Moreover, for any a
in A, #(a, ·) is convex on B. To prove that # is lower semi-continuous on B with
respect to the weak↘ topology, we must show that the set S = {b ↑ B : #(a,b)→ K}
is closed in the weak↘ topology for any K ↑ R. But S is convex, so this assertion
is equivalent to that S is closed in the norm topology of L
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⇐ 0, then bkl ⇐ b a.e. for some subsequence. Fatou’s lemma now
implies #(a,b) → liminfl⇐! bkl#(a,bkl ) → K, thus b ↑ S and so S is closed in the
norm topology. The minimax lemma in Appendix H is applicable and yields (7.5.26)
with # in place of ∀ . Hölder’s inequality and Exercise 7.5.1 with s = r
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where the middle inequality is based on Exercise 7.5.1 with s = q
p and the last one

is a consequence of (7.5.23). Using (7.5.26), we obtain minb↑B supa↑A#(a,b) → 0,
and this implies the existence of U in B (with ↗U↗
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#(a,U)→ 0 for all a ↑ A. Since | f | lies in A we have sup j#(a,U)→ 0 which yields
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the proof of part (b). ↭

Example 7.5.9. We use the previous theorem to obtain another proof of the vector-
valued Hardy–Littlewood maximal inequality in Corollary 5.6.5. We take Tj = M
for all j. For given 1 < p < q < ! and u in L
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whenever 1 < p < q < !, an inequality obtained earlier in (5.6.25).

It turns out that no specific properties of the Hardy–Littlewood maximal function
were used in the preceding inequality, and one could obtain a general result along
these lines.


