7.5 Further Properties of A_p Weights

connection of this sort. The following is a general theorem saying that any vectorvalued inequality is equivalent to some weighted inequality. The proof of the theorem is based on a minimax lemma whose precise formulation and proof can be found in Appendix H.

Theorem 7.5.8. (a) Let $0 . Let <math>\{T_j\}_j$ be a sequence of sublinear operators that map $L^q(\mu)$ to $L^r(\nu)$, where μ and ν are arbitrary measures. Then the vector-valued inequality

$$\left\| \left(\sum_{j} |T_{j}(f_{j})|^{p} \right)^{\frac{1}{p}} \right\|_{L^{r}} \le C \left\| \left(\sum_{j} |f_{j}|^{p} \right)^{\frac{1}{p}} \right\|_{L^{q}}$$
(7.5.23)

holds for all $f_j \in L^q(\mu)$ if and only if for every $u \ge 0$ in $L^{\frac{r}{r-p}}(\nu)$ there exists $U \ge 0$ in $L^{\frac{q}{q-p}}(\mu)$ with

$$\|U\|_{L^{\frac{q}{q-p}}} \leq \|u\|_{L^{\frac{r}{r-p}}},$$

$$\sup_{j} \int |T_{j}(f)|^{p} u dv \leq C^{p} \int |f|^{p} U d\mu \quad \text{for all } f \in L^{q}(\mu).$$
(7.5.24)

(b) Let $0 < q, r < p < \infty, r > \frac{p}{2}$, and let $\{T_j\}_j$ be as before. Then the vector-valued inequality (7.5.23) holds for all $f_j \in L^q(\mu)$ if and only if for every $u \ge 0$ in $L^{\frac{q}{p-q}}(\mu)$ there exists $U \ge 0$ in $L^{\frac{r}{p-r}}(\mathbf{v})$ with

$$\|U\|_{L^{\frac{r}{p-r}}} \leq \|u\|_{L^{\frac{q}{p-q}}},$$

$$\sup_{j} \int |T_{j}(f)|^{p} U^{-1} d\nu \leq C^{p} \int |f|^{p} u^{-1} d\mu \quad \text{for all } f \in L^{q}(\mu).$$
(7.5.25)

Proof. We begin with part (a). Given $f_j \in L^q(\mathbf{R}^n, \mu)$, we use (7.5.24) to obtain

$$\begin{split} \Big| \Big(\sum_{j} |T_{j}(f_{j})|^{p} \Big)^{\frac{1}{p}} \Big\|_{L^{r}(\mathbf{v})} &= \Big\| \sum_{j} |T_{j}(f_{j})|^{p} \Big\|_{L^{\frac{r}{p}}(\mathbf{v})}^{\frac{1}{p}} \\ &= \sup_{\|\|u\|_{L^{\frac{r}{r-p}}} \leq 1} \left(\int_{\mathbf{R}^{n}} \sum_{j} |T_{j}(f_{j})|^{p} \, u \, d\mathbf{v} \right)^{\frac{1}{p}} \\ &\leq \sup_{\|\|u\|_{L^{\frac{r}{r-p}}} \leq 1} C \bigg(\int_{\mathbf{R}^{n}} \sum_{j} |f_{j}|^{p} \, U \, d\mu \bigg)^{\frac{1}{p}} \\ &\leq \sup_{\|\|u\|_{L^{\frac{r}{r-p}}} \leq 1} C \Big\| \sum_{j} |f_{j}|^{p} \Big\|_{L^{\frac{p}{p}}(\mu)}^{\frac{1}{p}} \| U \|_{L^{\frac{q}{q-p}}}^{\frac{1}{p}} \\ &\leq C \Big\| \Big(\sum_{j} |f_{j}|^{p} \Big)^{\frac{1}{p}} \Big\|_{L^{q}(\mu)}, \end{split}$$

7 Weighted Inequalities

which proves (7.5.23) with the same constant *C* as in (7.5.24). To prove the converse, we fix $u \in L^{\frac{r}{r-p}}(v)$, $u \ge 0$, with $||u||_{\frac{r}{r-p}} = 1$ and fix $f \in L^{q}(\mu)$. We define sets

$$A = \left\{ a \in L^{\frac{q}{p}}(\mu) : a \ge |f|^{p} \right\}, \quad B = \left\{ b \in L^{\frac{q}{q-p}}(\mu) : b \ge 0, \|b\|_{L^{\frac{q}{q-p}}} \le 1 \right\}$$

Clearly *A* is a convex subset of $L^{\frac{q}{p}}$ and *B* is the unit ball of $L^{\frac{q}{q-p}} = (L^{\frac{q}{p}})^*$ which is weak* compact and convex. For a fixed *j* we define the bilinear functional Φ on $A \times B$ by

$$\Phi(a,b) = \int |T_j(f)|^p u d\nu - C^p \int ab d\mu$$

Then $\Phi(\cdot, b)$ is linear (hence concave) on *A* for any $\vec{b} \in B$. Moreover, for any $a \in A$, $\Phi(a, \cdot)$ is linear (hence convex) and continuous (hence lower semicontinuous) on *B* in the weak^{*} topology, since if $b_k \to b$ in *B*, then

$$\int ab_k d\mu \to \int ab d\mu \quad \text{as } k \to \infty$$

for any $a \in L^{\frac{q}{p}}$. Thus the *minimax lemma* in Appendix H is applicable. This gives

$$\min_{b \in B} \sup_{a \in A} \Phi(a, b) = \sup_{a \in A} \min_{b \in B} \Phi(a, b).$$
(7.5.26)

Hölder's inequality and the fact for all $a \in A$ we have $-a \leq -|f|^p$ yields

$$\begin{split} \sup_{a \in A} \min_{b \in B} \Phi(a, b) &\leq \left\| |T_{j}(f)|^{p} \right\|_{L^{\frac{r}{p}}(v)} \|u\|_{L^{\frac{r}{p-p}}} - C^{p} \max_{b \in B} \int |f|^{p} b \, d\mu \\ &= \left\| T_{j}(f) \right\|_{L^{r}(v)}^{p} - C^{p} \left\| |f|^{p} \right\|_{L^{\frac{q}{p}}(\mu)} \leq 0, \end{split}$$

by (7.5.23) applied to the sequence $(\cdots, 0, f, 0, \ldots)$ with f in the j th spot. It follows from (7.5.26) that $\min_{b \in B} \sup_{a \in A} \Phi(a, b) \leq 0$. Thus there exists $U \in B$ (with $||U||_{L^{\frac{q}{p-q}}} \leq 1 = ||u||_{L^{\frac{r}{p-r}}}$) such that $\Phi(a, U) \leq 0$ for every $a \in A$. Since $|f| \in A$ we have $\sup_{j} \Phi(|f|, U) \leq 0$ which yields (7.5.24) when $||u||_{L^{\frac{r}{r-p}}} = 1$. The general case follows by scaling u. This completes the proof of part (a).

The proof of part (b) is similar. Using the result of Exercise 7.5.1 and (7.5.25), given $f_j \in L^q(\mathbf{R}^n, \mu)$ we have

$$\begin{split} \left| \left(\sum_{j} |f_{j}|^{p} \right)^{\frac{1}{p}} \right\|_{L^{q}(\mu)} &= \left\| \sum_{j} |f_{j}|^{p} \right\|_{L^{p}(\mu)}^{\frac{1}{p}} \\ &= \inf_{\|u\|_{L^{\frac{q}{p-q}}} \leq 1} \left(\int_{\mathbf{R}^{n}} \sum_{j} |f_{j}|^{p} u^{-1} d\mu \right)^{\frac{1}{p}} \\ &\geq \frac{1}{C} \inf_{\|U\|_{L^{\frac{r}{p-r}}} \leq 1} \left(\int_{\mathbf{R}^{n}} \sum_{j} |T_{j}(f_{j})|^{p} U^{-1} d\nu \right)^{\frac{1}{p}} \\ &= \frac{1}{C} \left\| \sum_{j} |T_{j}(f_{j})|^{p} \right\|_{L^{\frac{p}{p}}(\nu)}^{\frac{1}{p}} \end{split}$$

556

7.5 Further Properties of A_p Weights

$$= \frac{1}{C} \left\| \left(\sum_{j} |T_j(f_j)|^p \right)^{\frac{1}{p}} \right\|_{L^r(\mathbf{v})}$$

To prove the converse direction in part (b), given a fixed $u \ge 0$ in $L^{\frac{q}{p-q}}(\mu)$ with $||u||_{L^{\frac{q}{p-q}}} = 1$, we define sets and

$$\overline{A} = \left\{ a \in L^{\frac{q}{p}}(\mu) : a \ge |f|^{p} \right\}, \quad B = \left\{ b \in L^{\frac{r}{p-r}}(\nu) : b \ge 0, \quad \|b\|_{L^{\frac{r}{p-r}}} \le 1 \right\}.$$

As $r > \frac{p}{2}$, $\frac{r}{p-r} > 1$ and so *B* is is weak* compact as the unit ball of $L^{\frac{r}{p-r}} = (L^{\frac{r}{2r-p}})^*$. We also define a functional Ψ on $A \times B$ by setting

$$\Psi(a,b) = \int |T_j(f)|^p b^{-1} d\nu - C^p \int a u^{-1} d\mu.$$

Then $\Psi(\cdot, b)$ is linear (hence concave) on *A* for any $b \in B$. Moreover, for any a in *A*, $\Psi(a, \cdot)$ is convex on *B*. To prove that Ψ is lower semi-continuous on *B* with respect to the weak* topology, we must show that the set $S = \{b \in B : \Psi(a,b) \le K\}$ is closed in the weak* topology for any $K \in \mathbf{R}$. But *S* is convex, so this assertion is equivalent to that *S* is closed in the norm topology of $L^{\frac{r}{p-r}}(v)$. If $b_k \in B$ and $\|b_k - b\|_{L^{\frac{r}{p-r}}} \to 0$, then $b_{k_l} \to b$ a.e. for some subsequence. Fatou's lemma now implies $\Psi(a,b) \le \liminf_{l \to \infty} b_{k_l} \Psi(a,b_{k_l}) \le K$, thus $b \in S$ and so *S* is closed in the norm topology. The *minimax lemma* in Appendix H is applicable and yields (7.5.26) with Ψ in place of Φ . Hölder's inequality and Exercise 7.5.1 with $s = \frac{r}{p}$ yield

$$\begin{split} \sup_{a \in A} \min_{b \in B} \Psi(a,b) &\leq \left\| |T_j(f)|^p \right\|_{L^{\frac{r}{p}}(\mathbf{v})} - C^p \int |f|^p \, u^{-1} \, d\mu \\ &\leq \|T_j(f)\|_{L^{r}(\mathbf{v})}^p - C^p \left\| |f|^p \right\|_{L^{\frac{q}{p}}(\mu)} \leq 0, \end{split}$$

where the middle inequality is based on Exercise 7.5.1 with $s = \frac{q}{p}$ and the last one is a consequence of (7.5.23). Using (7.5.26), we obtain $\min_{b \in B} \sup_{a \in A} \Psi(a, b) \leq 0$, and this implies the existence of U in B (with $||U||_{L^{\frac{p}{p-r}}} \leq 1 = ||u||_{L^{\frac{q}{p-q}}}$) such that $\Psi(a, U) \leq 0$ for all $a \in A$. Since |f| lies in A we have $\sup_{j} \Psi(a, U) \leq 0$ which yields (7.5.25) when $||u||_{L^{\frac{q}{q-p}}} = 1$. The general case follows by scaling u. This completes the proof of part (b).

Example 7.5.9. We use the previous theorem to obtain another proof of the vectorvalued Hardy–Littlewood maximal inequality in Corollary 5.6.5. We take $T_j = M$ for all *j*. For given 1 and*u* $in <math>L^{\frac{q}{q-p}}$ we set $s = \frac{q}{q-p}$ and $U = \|M\|_{L^{\delta} \to L^{\delta}}^{-1} M(u)$. In view of Exercise 7.1.7 we have

 $\|U\|_{L^{s}} \leq \|u\|_{L^{s}} \quad \text{and} \quad \int_{\mathbf{R}^{n}} M(f)^{p} \, u \, dx \leq C^{p} \int_{\mathbf{R}^{n}} |f|^{p} \, U \, dx.$ Using Theorem 7.5.8, we obtain

$$\left\| \left(\sum_{j} |M(f_{j})|^{p} \right)^{\frac{1}{p}} \right\|_{L^{q}} \le C_{n,p,q} \left\| \left(\sum_{j} |f_{j}|^{p} \right)^{\frac{1}{p}} \right\|_{L^{q}}$$
(7.5.27)

whenever 1 , an inequality obtained earlier in (5.6.25).

It turns out that no specific properties of the Hardy–Littlewood maximal function were used in the preceding inequality, and one could obtain a general result along these lines.