7 Weighted Inequalities

Since

$$||T(f)||_{L^{p,\infty}(w)} = \sup_{\lambda>0} ||T_{\lambda}(f)||_{L^{p}(w)},$$

it follows that T maps $L^{p}(w)$ to $L^{p,\infty}(w)$ with the asserted norm.

Assuming that the operator T in the preceding theorem is sublinear (or quasisublinear), we obtain the following result that contains a stronger conclusion.

Corollary 7.5.6. Suppose that T is a sublinear operator on $\bigcup_{1 \leq q < \infty} \bigcup_{w \in A_q} L^q(w)$ that takes values in the space of measurable complex-valued functions. Fix $1 \leq p_0 < \infty$ and suppose that there is an increasing function N on $[1,\infty)$ such that for all weights v in A_{p_0} we have

$$\|T\|_{L^{p_0}(v) \to L^{p_0,\infty}(v)} \le N([v]_{A_{p_0}}).$$
(7.5.22)

Then for any $1 and any weight w in <math>A_p$ there is a constant $K'(n, p, p_0, [w]_{A_p})$ such that

$$\|T(f)\|_{L^{p}(w)} \leq K'(n, p, p_{0}, [w]_{A_{p}}) \|f\|_{L^{p}(w)}.$$

Proof. The proof follows from Theorem 7.5.5 and the Marcinkiewicz interpolation theorem. \Box

We end this subsection by observing that the conclusion of the extrapolation Theorem 7.5.3 can be strengthened to yield vector-valued estimates. This strengthening may be achieved by a simple adaptation of the proof discussed.

Corollary 7.5.7. Suppose that *T* is defined on $\bigcup_{1 \le q < \infty} \bigcup_{w \in A_q} L^q(w)$ and takes values in the space of all measurable complex-valued functions. Fix $1 \le p_0 < \infty$ and suppose that there is an increasing function *N* on $[1,\infty)$ such that for all weights *v* in A_{p_0} we have

$$||T||_{L^{p_0}(v)\to L^{p_0}(v)} \le N([v]_{A_{p_0}})$$

Then for every 1*and every weight* $<math>w \in A_p$ *we have*

$$\left\| \left(\sum_{j} |T(f_{j})|^{p_{0}} \right)^{\frac{1}{p_{0}}} \right\|_{L^{p}(w)} \leq K(n, p, p_{0}, [w]_{A_{p}}) \left\| \left(\sum_{j} |f_{j}|^{p_{0}} \right)^{\frac{1}{p_{0}}} \right\|_{L^{p}(w)}$$

for all sequences of functions f_j in $L^p(w)$, where $K(n, p, p_0, [w]_{A_p})$ is as in Theorem 7.5.3.

Proof. To derive the claimed vector-valued inequality follow the proof of Theorem 7.5.3 replacing the function f by $(\sum_{j} |f_{j}|^{p_{0}})^{\frac{1}{p_{0}}}$ and T(f) by $(\sum_{j} |T(f_{j})|^{p_{0}})^{\frac{1}{p_{0}}}$. \Box

7.5.3 Weighted Inequalities Versus Vector-Valued Inequalities

We now discuss connections between weighted inequalities and vector-valued inequalities. The next result provides strong evidence that there is a nontrivial

554