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We now proceed with the proof of the theorem. It is natural to split the proof into
the cases p < p0 and p > p0.

Case (1): p < p0. Assume momentarily that v = R( f )
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where we used Hölder’s inequality with exponents p0/p and (p0/p)′, the hypothesis
of the theorem, (7.5.7), and (7.5.8). Thus, we have the estimate∥∥T ( f )
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and it remains to obtain a bound for the Ap0 characteristic constant of R( f )
− p0

(p0/p)′ .
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Next we have(
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where we applied Hölder’s inequality with exponents(
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Multiplying (7.5.14) by (7.5.15) and taking the supremum over all cubes Q in Rn
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Combining this estimate with (7.5.13) and using the fact that N is an increasing
function, we obtain the validity of (7.5.5) in the case p < p0.

Case (2): p > p0. In this case we set r = p/p0 > 1. Then we have
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for some nonnegative function h with Lr′(w) norm equal to 1. We define a function
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noting that ∥∥H
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which is valid in view of (7.5.11). Moreover, this argument is based on the hypoth-
esis of the theorem and requires that H w be an Ap0 weight. To see this, we observe
that condition (7.5.12) implies that Hr′/p′w is an A1 weight with characteristic con-
stant at most a multiple of [w]A1 . Thus, there is a constant C′2 that depends only on n
and p such that
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where we set κ2(n, p, p0) = (C′2)
p′/r′ . We raise the preceding displayed expression

to the power p′0− 1, we average over the cube Q, and then we raise to the power
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where we use the fact that (
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Note that r′/p′ ≥ 1, since p0 ≥ 1. Using Hölder’s inequality with exponents r′/p′

and (r′/p′)′ we obtain that
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Multiplying (7.5.18) by (7.5.19), we deduce the estimate
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