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We now proceed with the proof of the theorem. It is natural to split the proof into

the cases p < pp and p > po.
pg

Case (1): p < po. Assume momentarily that v = R(f) @0/?/w is an A, weight.
Then using (7.5.4) for this weight v we write
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where we used Holder’s inequality with exponents po/p and (po/p)’, the hypothesis
of the theorem, (7.5.7), and (7.5.8). Thus, we have the estimate
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and it remains to obtain a bound for the A, characteristic constant of R(f) (#o/»)",

In view of (7.5.9), the function R( f) is an A; weight with characteristic constant at

most a constant multiple of [w ]” P . Consequently, there is a constant C} such that
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for any cube Q in R". Thus we have
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Next we have
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where we applied Holder’s inequality with exponents
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and we used that
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Multiplying (7.5.14) by (7.5.15) and taking the supremum over all cubes Q in R”
we deduce that
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Combining this estimate with (7.5.13) and using the fact that N is an increasing
function, we obtain the validity of (7.5.5) in the case p < po.

Case (2): p > po. In this case we set r = p/po > 1. Then we have
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for some nonnegative function i with L (w) norm equal to 1. We define a function
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Obviously, we have 0 < 7 < H and thus
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noting that
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which is valid in view of (7.5.11). Moreover, this argument is based on the hypoth-
esis of the theorem and requires that Hw be an A, weight. To see this, we observe
that condition (7.5.12) implies that H" /Py is an A, weight with characteristic con-
stant at most a multiple of [w],. Thus, there is a constant C} that depends only on n
and p such that
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for all cubes Q in R”. From this it follows that
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where we set k»(n, p, po) = (Cé)p,/ "' We raise the preceding displayed expression
to the power pj, — 1, we average over the cube Q, and then we raise to the power
po — 1. We deduce the estimate
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where we use the fact that
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Note that r//p’ > 1, since po > 1. Using Holder’s inequality with exponents '/ p’
and (¥ /p’) we obtain that
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where we used that
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Multiplying (7.5.18) by (7.5.19), we deduce the estimate
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