and the *maximal operator* associated with T as follows:

$$T^{(*)}(f)(x) = \sup_{\varepsilon > 0} \left| T^{(\varepsilon)}(f)(x) \right|.$$

We note that if *T* is in $CZO(\delta, A, B)$, then $T^{(\varepsilon)}(f)$ and $T^{(*)}(f)$ are well defined for all *f* in $\bigcup_{1 \le p < \infty} L^p(\mathbf{R}^n)$. It is also well defined whenever *f* is locally integrable and satisfies $\int_{|x-y|>\varepsilon} |f(y)| |x-y|^{-n} dy < \infty$ for all $x \in \mathbf{R}^n$ and $\varepsilon > 0$.

The class of kernels in $SK(\delta, A)$ extends the family of convolution kernels that satisfy conditions (5.3.5) and (5.3.11). Obviously, the associated operators in $CZO(\delta, A, B)$ generalize the associated convolution operators.

A fundamental property of operators in $CZO(\delta, A, B)$ is that they have bounded extensions on all the $L^p(\mathbf{R}^n)$ spaces and also from $L^1(\mathbf{R}^n)$ to weak $L^1(\mathbf{R}^n)$. This is proved via an adaptation of Theorem 5.3.3; see Theorem 4.2.2 in [131]. There are analogous results for the maximal counterparts $T^{(*)}$ of elements of $CZO(\delta, A, B)$. In fact, an analogue of Theorem 5.3.5 yields that $T^{(*)}$ is L^p bounded for 1and weak type <math>(1, 1); this result is contained in Theorem 4.2.4 in [131].

We discuss weighted inequalities for singular integrals for general operators in $CZO(\delta, A, B)$. In Subsections 7.4.2 and 7.4.3, the reader may wish to replace kernels in $SK(\delta, A)$ by the more familiar functions K(x) defined on $\mathbb{R}^n \setminus \{0\}$ that satisfy (5.3.5) and (5.3.11).

7.4.2 A Good Lambda Estimate for Singular Integrals

The following theorem is the main result of this section.

Theorem 7.4.3. Let $1 \le p \le \infty$, $w \in A_p$, and T in $CZO(\delta, A, B)$. Then there exist positive constants¹ $C_0 = C_0(n, p, [w]_{A_p})$, $\varepsilon_0 = \varepsilon_0(n, p, [w]_{A_p})$, and $c_0(n, \delta)$, such that if $\gamma_0 = c_0(n, \delta)/A$, then for all $0 < \gamma < \gamma_0$ we have

$$w\big(\{T^{(*)}(f) > 3\lambda\} \cap \{M(f) \le \gamma\lambda\}\big) \le C_0 \gamma^{\varepsilon_0} (A+B)^{\varepsilon_0} w\big(\{T^{(*)}(f) > \lambda\}\big), \quad (7.4.6)$$

for all locally integrable functions f for which

$$\int_{|x-y|\geq\varepsilon} |f(y)| \, |x-y|^{-n} dy < \infty$$

for all $x \in \mathbf{R}^n$ and $\varepsilon > 0$. Here M denotes the Hardy–Littlewood maximal operator.

Proof. We write the open set

$$\Omega = \{T^{(*)}(f) > \lambda\} = \bigcup_j Q_j,$$

¹ the dependence on *p* is relevant only when $p < \infty$

7 Weighted Inequalities

where Q_j are the Whitney cubes (see Appendix J). We set

$$Q_j^* = 10\sqrt{n}Q_j,$$
$$Q_j^{**} = 10\sqrt{n}Q_j^*,$$

where aQ denotes the cube with the same center as Q whose side length is $a\ell(Q)$, where $\ell(Q)$ is the side length of Q. We note that in view of the properties of the Whitney cubes, the distance from Q_j to Ω^c is at most $4\sqrt{n}\ell(Q_j)$. But the distance from Q_j to the boundary of Q_j^* is $(5\sqrt{n} - \frac{1}{2})\ell(Q_j)$, which is bigger than $4\sqrt{n}\ell(Q_j)$. Therefore, Q_j^* must meet Ω^c and for every cube Q_j we fix a point y_j in $\Omega^c \cap Q_j^*$. See Figure 7.1.

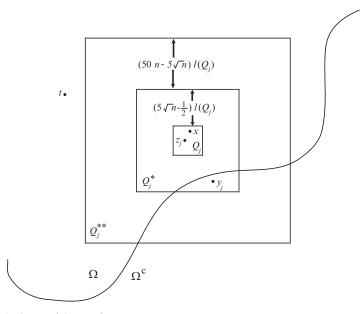


Fig. 7.1 A picture of the proof.

We also fix *f* satisfying the integrability condition of Theorem 7.4.3 and for each *j* we write $f = f_0^j + f_\infty^j$, where $f_0^j = f \chi_{Q_j^{**}}$ is the part of *f* near Q_j and $f_\infty^j = f \chi_{(Q_j^{**})^c}$ is the part of *f* away from Q_j . We now claim that the following estimate is true:

$$\left|Q_{j} \cap \{T^{(*)}(f) > 3\lambda\} \cap \{M(f) \le \gamma\lambda\}\right| \le C_{n}\gamma(A+B)\left|Q_{j}\right|.$$
(7.4.7)

Once the validity of (7.4.7) is established, we apply Theorem 7.3.3 (d) when $p = \infty$ or Proposition 7.2.8 when $p < \infty$ to obtain constants $\varepsilon_0, C_2 > 0$, which depend on $[w]_{A_p}$, p, n when $p < \infty$ and on $[w]_{A_{\infty}}$ and n when $p = \infty$, such that

$$w(Q_j \cap \{T^{(*)}(f) > 3\lambda\} \cap \{M(f) \le \gamma\lambda\}) \le C_2(C_n)^{\varepsilon_0} \gamma^{\varepsilon_0} (A+B)^{\varepsilon_0} w(Q_j)$$

534