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(f) There exist p,C3 < ∞ such that [w]Ap ≤C3. In other words, w lies in Ap for some
p ∈ [1,∞).

All the constants C1,C2,C3,α,β ,γ,δ ,α ′,β ′,ε,ε0, and p in (a)–(f) depend only
on the dimension n and on [w]A∞

. Moreover, if any of the statements in (a)–(f) is
valid, then so is any other statement in (a)–(f) with constants that depend only on
the dimension n and the constants that appear in the assumed statement.

Proof. The proof follows from the sequence of implications

w ∈ A∞ =⇒ (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ ( f ) =⇒ w ∈ A∞ .

At each step we keep track of the way the constants depend on the constants of the
previous step. This is needed to validate the last assertion of the theorem.
w ∈ A∞ =⇒ (a)

Fix a cube Q. Since multiplication of an A∞ weight with a positive scalar does
not alter its A∞ characteristic, we may assume that

∫
Q logw(t)dt = 0. This implies

that AvgQ w≤ [w]A∞
. Then we have∣∣{x ∈ Q : w(x)≤ γ Avg
Q

w}
∣∣ ≤ ∣∣{x ∈ Q : w(x)≤ γ[w]A∞

}
∣∣

=
∣∣{x ∈ Q : log(1+w(x)−1)≥ log(1+(γ[w]A∞

)−1)}
∣∣

≤ 1
log(1+(γ[w]A∞

)−1)

∫
Q

log
1+w(t)

w(t)
dt

=
1

log(1+(γ[w]A∞
)−1)

∫
Q

log(1+w(t))dt

≤ 1
log(1+(γ[w]A∞

)−1)

∫
Q

w(t)dt

≤ [w]A∞
|Q|

log(1+(γ[w]A∞
)−1)

=
1
2
|Q| ,

which proves (a ) with γ = [w]−1
A∞
(e2[w]A∞ −1)−1 and δ = 1

2 .
(a) =⇒ (b)

Let Q be fixed and let A be a subset of Q with w(A) > βw(Q) for some β to be
chosen later. Setting S = Q\A, we have w(S)< (1−β )w(Q). We write S = S1∪S2,
where

S1 = {x ∈ S : w(x)> γ Avg Qw} and S2 = {x ∈ S : w(x)≤ γ Avg Qw} .

For S2 we have |S2| ≤ δ |Q| by assumption (a). For S1 we use Chebyshev’s inequality
to obtain

|S1| ≤
1

γ Avg
Q

w

∫
S

w(t)dt =
|Q|
γ

w(S)
w(Q)

<
1−β

γ
|Q| .
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Adding the estimates for |S1| and |S2|, we obtain

|S| ≤ |S1|+ |S2|<
1−β

γ
|Q|+δ |Q|=

(
δ +

1−β

γ

)
|Q| .

Choosing numbers α,β in (0,1) such that δ + 1−β

γ
= 1−α , for example α = 1−δ

2

and β = 1− (1−δ )γ
2 , we obtain |S|<(1−α)|Q|, that is, |A|> α|Q|.

(b) =⇒ (c)
This was proved in Corollary 7.2.4. To keep track of the constants, we note that

the choices

ε =
− 1

2 logβ

log2n− logα
and C1 = 1+

(2nα−1)ε

1− (2nα−1)ε β

as given in (7.2.6) and (7.2.7) serve our purposes.
(c) =⇒ (d )

We apply first Hölder’s inequality with exponents 1+ ε and (1+ ε)/ε and then
the reverse Hölder estimate to obtain

∫
A

w(x)dx ≤
(∫

A
w(x)1+ε dx

) 1
1+ε

|A|
ε

1+ε

≤
(

1
|Q|

∫
Q

w(x)1+ε dx
) 1

1+ε

|Q|
1

1+ε |A|
ε

1+ε

≤ C1

|Q|

∫
Q

w(x)dx |Q|
1

1+ε |A|
ε

1+ε ,

which gives
w(A)
w(Q)

≤C1

( |A|
|Q|

) ε
1+ε

.

This proves (d ) with ε0 =
ε

1+ε
and C2 =C1.

(d ) =⇒ (e)
Pick an 0 < α ′′ < 1 small enough that β ′′ = C2(α

′′)ε0 < 1. It follows from (d )
that

|A|≤α
′′|Q| =⇒ w(A)≤β

′′w(Q) (7.3.5)

for all cubes Q and all A measurable subsets of Q. Replacing A by Q\A, the impli-
cation in (7.3.5) can be equivalently written as

|A| ≥ (1−α
′′)|Q| =⇒ w(A)≥ (1−β

′′)w(Q) .

In other words, for measurable subsets A of Q we have

w(A)< (1−β
′′)w(Q) =⇒ |A|< (1−α

′′)|Q| , (7.3.6)


