
7.1 The Ap Condition 509

We obtain this estimate by interpolation. Obviously (7.1.28) is valid when q = ∞

with C(∞,n) = 1. If we prove that∥∥Mw
c
∥∥

L1(w)→L1,∞(w) ≤C(1,n)< ∞ , (7.1.29)

then (7.1.28) will follow from Theorem 1.3.2.
To prove (7.1.29) we fix f ∈ L1(Rn,wdx). We first show that the set

Eλ = {Mw
c ( f )> λ}

is open. For any r > 0, let Q(x,r) denote an open cube of side length 2r with center
x ∈ Rn. If we show that for any r > 0 and x ∈ Rn the function

x 7→ 1
w(Q(x,r))

∫
Q(x,r)

| f |wdy (7.1.30)

is continuous, then Mw
c ( f ) is the supremum of continuous functions; hence it is

lower semicontinuous and thus the set Eλ is open. But this is straightforward. If
xn→ x0, then w(Q(xn,r))→ w(Q(x0,r)) and also

∫
Q(xn,r) | f |wdy→

∫
Q(x0,r) | f |wdy

by the Lebesgue dominated convergence theorem. Since w(Q(x0,r)) 6= 0, it follows
that the function in (7.1.30) is continuous.

Given K a compact subset of Eλ , for any x ∈ K select an open cube Qx centered
at x such that

1
w(Qx)

∫
Qx

| f |wdy > λ .

Applying Lemma 7.1.10 (proved immediately afterward) we find a subfamily
{Qx j}m

j=1 of the family of the cubes {Qx : x ∈ K} such that (7.1.31) and (7.1.32)
hold. Then

w(K)≤
m

∑
j=1

w(Qx j)≤
m

∑
j=1

1
λ

∫
Qx j

| f |wdy≤ 72n

λ

∫
Rn
| f |wdy ,

where the last inequality follows by multiplying (7.1.32) by | f |w and integrating
over Rn. Taking the supremum over all compact subsets K of Eλ and using the inner
regularity of wdx, which is a consequence of the Lebesgue monotone convergence
theorem, we deduce that Mw

c maps L1(w) to L1,∞(w) with constant at most 72n. Thus
(7.1.29) holds with C(1,n) = 72n. �

Lemma 7.1.10. Let K be a bounded set in Rn and for every x∈K, let Qx be an open
cube with center x and sides parallel to the axes. Then there exist m∈Z+∪{∞} and
a sequence of points {x j}m

j=1 in K such that

K j
m⋃

j=1

Qx j (7.1.31)
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and for almost all y ∈ Rn one has

m

∑
j=1

χQx j
(y)≤ 72n . (7.1.32)

Proof. Let s0 = sup{`(Qx) : x ∈ K}. If s0 = ∞, then there exists x1 ∈ K such that
`(Qx1) > 4L, where [−L,L]n contains K. Then K is contained in Qx1 and the state-
ment of the lemma is valid with m = 1.

Suppose now that s0 < ∞. Select x1 ∈ K such that `(Qx1)> s0/2. Then define

K1 = K \Qx1 , s1 = sup{`(Qx) : x ∈ K1} ,

and select x2 ∈ K1 such that `(Qx2)> s1/2. Next define

K2 = K \ (Qx1 ∪Qx2) , s2 = sup{`(Qx) : x ∈ K2} ,

and select x3 ∈ K2 such that `(Qx3) > s2/2. Continue until the first integer m is
found such that Km is an empty set. If no such integer exists, continue this process
indefinitely and set m = ∞.

We claim that for all i 6= j we have 1
3 Qxi ∩ 1

3 Qx j = /0. Indeed, suppose that i > j.
Then xi ∈Ki−1 = K \(Qx1 ∪·· ·∪Qxi−1); thus xi /∈Qx j . Also xi ∈Ki−1 jK j−1, which
implies that `(Qxi)≤ s j−1 < 2`(Qx j). Since xi /∈Qx j and `(Qx j)>

1
2`(Qxi), it easily

follows that 1
3 Qxi ∩ 1

3 Qx j = /0.
We now prove (7.1.31). If m < ∞, then Km = /0 and therefore K j

⋃m
j=1 Qx j . If

m = ∞, then there is an infinite number of selected cubes Qx j . Since the cubes 1
3 Qx j

are pairwise disjoint and have centers in a bounded set, it must be the case that
some subsequence of the sequence of their lengths converges to zero. If there exists
a y ∈ K \

⋃
∞
j=1 Qx j , this y would belong to all K j, j = 1,2, . . . , and then s j ≥ `(Qy)

for all j. Since some subsequence of the s j’s tends to zero, it would follow that
`(Qy) = 0, which would force the open cube Qy to be the empty set, a contradiction.
Thus (7.1.31) holds.

Finally, we show that ∑
m
j=1 χQx j

(y)≤ 72n for almost every point y∈Rn. To prove
this we consider the n hyperplanes Hi that are parallel to the coordinate hyperplanes
and pass through the point y. Then we write Rn as a union of n hyperplanes Hi
of n-dimensional Lebesgue measure zero and 2n higher-dimensional open closed
“octants” Or, henceforth called orthants, determined by the Hi’s. We fix a y ∈ Rn

and we show that there are at most 36n points x j ∈ Or such that y lies in Qx j for
a given open orthant Or. To prove this assertion, setting |z|`∞ = sup1≤i≤n |zi| for
points z = (z1, . . . ,zn) in Rn, we pick an xk0 ∈ K ∩Or such that Qxk0

contains y and
|xk0−y|`∞ is the largest possible among all |x j−y|`∞ . If x j is another point in K∩Or
such that Qx j contains y, then we claim that x j ∈Qxk0

. Indeed, to show this we notice
that for each i ∈ {1, . . . ,n} we have

|x j,i− xk0,i| =
∣∣x j,i− yi− (xk0,i− yi)

∣∣
=
∣∣|x j,i− yi|− |xk0,i− yi|

∣∣
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≤ max
(
|xk0,i− yi|, |x j,i− yi|

)
≤ max

(
|xk0 − y|`∞ , |x j− y|`∞

)
= |xk0 − y|`∞

< 1
2`(Qxk0

) ,

where the second equality is due to the fact that x j,xk0 lie in the same orthant and
the last inequality in the fact that y ∈ Qxk0

; it follows that x j lies in Qxk0
.

We observed previously that i > j implies xi /∈ Qx j . Since x j lies in Qxk0
, one

must then have j ≤ k0, which implies that 1
2`(Qxk0

) < `(Qx j). Thus all cubes Qx j

with centers in K∩Or that contain the fixed point y have side lengths comparable to
that of Qxk0

. A simple geometric argument now gives that there are at most finitely
many cubes Qx j of side length between α and 6α that contain the given point y such
that 1

3 Qx j are pairwise disjoint. Indeed, let α = 1
2`(Qxk0

) and let {Qxr}r∈I be the
cubes with these properties. Then we have

αn|I|
3n ≤∑

r∈I

∣∣ 1
3 Qxr

∣∣= ∣∣⋃
r∈I

1
3 Qxr

∣∣≤ ∣∣⋃
r∈I

Qxr

∣∣≤ (12α)n ,

since all the cubes Qxr contain the point y and have length at most 6α and they
must therefore be contained in a cube of side length 12α centered at y. This obser-
vation shows that |I| ≤ 36n, and since there are 2n sets Or, we conclude the proof
of (7.1.32). �

Remark 7.1.11. Without use of the covering Lemma 7.1.10, (7.1.29) can be proved
via the doubling property of w (cf. Exercise 2.1.1(a)), but then the resulting constant
C(q,n) would depend on the doubling constant of the measure wdx and thus on
[w]Ap ; this would yield a worse dependence on [w]Ap in the constant in (7.1.25).

Exercises

7.1.1. Let k be a nonnegative measurable function such that k,k−1 are in L∞(Rn).
Prove that if w is an Ap weight for some 1≤ p < ∞, then so is kw.

7.1.2. Let w1, w2 be two A1 weights and let 1 < p < ∞. Prove that w1w1−p
2 is an Ap

weight by showing that

[w1w1−p
2 ]Ap ≤ [w1]A1 [w2]

p−1
A1

.

7.1.3. Suppose that w ∈ Ap for some p ∈ [1,∞) and 0 < δ < 1. Prove that wδ ∈ Aq,
where q = δ p+1−δ , by showing that

[wδ ]Aq ≤ [w]δAp
.


