7.1 The A_p Condition

Example 7.1.8. On \mathbf{R}^n the function

$$u(x) = \begin{cases} \log \frac{1}{|x|} & \text{when } |x| < \frac{1}{e}, \\ 1 & \text{otherwise,} \end{cases}$$

is an A_1 weight. Indeed, to check condition (7.1.19) it suffices to consider balls of type I and type II as defined in Example 7.1.6. In either case the required estimate follows easily.

We now return to a point alluded to earlier, that the A_p condition implies the boundedness of the Hardy–Littlewood maximal function M on the space $L^p(w)$. To this end we introduce four maximal functions acting on functions f that are locally integrable with respect to w:

$$M^{w}(f)(x) = \sup_{B \ni x} \frac{1}{w(B)} \int_{B} |f| w \, dy$$

where the supremum is taken over open balls B that contain the point x and

$$\mathcal{M}^{w}(f)(x) = \sup_{\delta > 0} \frac{1}{w(B(x,\delta))} \int_{B(x,\delta)} |f| w dy,$$

$$M^{w}_{c}(f)(x) = \sup_{Q \ni x} \frac{1}{w(Q)} \int_{Q} |f| w dy,$$

where Q is an open cube containing the point x, and

$$\mathcal{M}_{c}^{w}(f)(x) = \sup_{\delta > 0} \frac{1}{w(\mathcal{Q}(x, \delta))} \int_{\mathcal{Q}(x, \delta)} |f| \, w \, dy,$$

where $Q(x, \delta) = \prod_{j=1}^{n} (x_j - \delta, x_j + \delta)$ is a cube of side length 2δ centered at $x = (x_1, \dots, x_n)$. When w = 1, these maximal functions reduce to the standard ones M(f), M(f), $M_c(f)$, and $M_c(f)$, the uncentered and centered Hardy–Littlewood maximal functions with respect to balls and cubes, respectively.

Theorem 7.1.9. (*a*) Let $w \in A_1$. Then we have

$$\left|\mathfrak{M}_{c}\right|_{L^{1}(w)\to L^{1,\infty}(w)} \leq 3^{n}[w]_{A_{1}}^{2}.$$
(7.1.24)

(b) Let $w \in A_p(\mathbf{R}^n)$ for some $1 . Then there is a constant <math>C_{n,p}$ such that

$$\left\|\mathfrak{M}_{c}\right\|_{L^{p}(w)\to L^{p}(w)} \leq C_{n,p}[w]_{A_{p}}^{\frac{1}{p-1}}.$$
(7.1.25)

Since the operators \mathcal{M}_c , \mathcal{M}_c , \mathcal{M} , and M are pointwise comparable, a similar conclusions hold for the other three as well.

Proof. (a) Since $d\mu = wdx$ is a doubling measure and $d\mu(3Q) \leq 3^n[w]_{A_1}\mu(Q)$, using Proposition 7.1.5 (9) and Exercise 2.1.1 we obtain that M_c^w maps $L^1(w)$ to $L^{1,\infty}(w)$ with norm at most $3^n[w]_{A_1}$. This proves (7.1.24) since $M_c \leq [w]_{A_1}M_c^w$.