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is called the A1 Muckenhoupt characteristic constant of w, or simply the A1 charac-
teristic constant of w. Note that A1 weights w satisfy

1
|Q|

∫
Q

w(t)dt ≤ [w]A1 ess.inf
y∈Q

w(y) (7.1.18)

for all cubes Q in Rn.

Remark 7.1.2. We also define

[w]balls
A1

= sup
B balls in Rn

(
1
|B|

∫
B

w(t)dt
)∥∥w−1∥∥

L∞(B) . (7.1.19)

Using (7.1.13), we see that the smallest constant C1 that appears in (7.1.16) is equal
to the A1 characteristic constant of w as defined in (7.1.19). This is also equal to the
smallest constant that appears in (7.1.13). All these constants are bounded above
and below by dimensional multiples of [w]A1 .

We now recall condition (7.1.5), which motivates the following definition of Ap
weights for 1 < p < ∞.

Definition 7.1.3. Let 1 < p < ∞. A weight w is said to be of class Ap if

sup
Q cubes in Rn

(
1
|Q|

∫
Q

w(x)dx
)(

1
|Q|

∫
Q

w(x)−
1

p−1 dx
)p−1

< ∞ . (7.1.20)

The expression in (7.1.20) is called the Ap Muckenhoupt characteristic constant of
w (or simply the Ap characteristic constant of w) and is denoted by [w]Ap .

Remark 7.1.4. Note that Definitions 7.1.1 and 7.1.3 could have been given with the
set of all cubes in Rn replaced by the set of all balls in Rn. Defining [w]balls

Ap
as in

(7.1.20) except that cubes are replaced by balls, we see that

(
2n/vn

)p ≤
[w]Ap

[w]balls
Ap

≤
(
nn/2vn2−n)p

. (7.1.21)

7.1.2 Properties of Ap Weights

It is straightforward that translations, isotropic dilations, and scalar multiples of Ap
weights are also Ap weights with the same Ap characteristic. We summarize some
basic properties of Ap weights in the following proposition.

Proposition 7.1.5. Let w ∈ Ap for some 1 ≤ p < ∞. Then

(1) [δ λ (w)]Ap = [w]Ap , where δ λ (w)(x) = w(λx1, . . . ,λxn).

(2) [τz(w)]Ap = [w]Ap , where τz(w)(x) = w(x− z), z ∈ Rn.
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(3) [λw]Ap = [w]Ap for all λ > 0.

(4) When 1 < p < ∞, the function w− 1
p−1 is in Ap′ with characteristic constant

[
w− 1

p−1
]

Ap′
= [w]

1
p−1
Ap

.

Therefore, w ∈ A2 if and only if w−1 ∈ A2 and both weights have the same A2
characteristic constant.

(5) [w]Ap ≥ 1 for all w ∈ Ap. Equality holds if and only if w is a constant.

(6) The classes Ap are increasing as p increases; precisely, for 1 ≤ p < q < ∞ we
have

[w]Aq ≤ [w]Ap .

(7) lim
q→1+

[w]Aq = [w]A1 if w ∈ A1.

(8) When p > 1, the following is an equivalent characterization of the Ap charac-
teristic constant of w:

[w]Ap = sup
Qcubes
in Rn

sup
f ∈ Lp(Q,wdt)∫

Q | f |pwdt>0

{ ( 1
|Q|
∫

Q | f (t)|dt
)p

1
w(Q)

∫
Q | f (t)|pw(t)dt

}
.

(9) The measure w(x)dx is doubling: precisely, for all λ > 1 and all cubes Q we
have

w(λQ)≤ λ
np[w]Ap w(Q) .

(λQ denotes the cube with the same center as Q and side length λ times the
side length of Q.)

Proof. The simple proofs of (1), (2), and (3) are left as an exercise. Property (4) is
also easy to check and plays the role of duality in this context. To prove (5) we use
Hölder’s inequality with exponents p and p′ to obtain

1 =
1
|Q|

∫
Q

dx =
1
|Q|

∫
Q

w(x)
1
p w(x)−

1
p dx ≤ [w]

1
p
Ap

,

with equality holding only when w(x)
1
p = cw(x)−

1
p for some c > 0 (i.e., when w is a

constant). To prove (6), observe that 0 < q′−1 < p′−1 ≤ ∞ and that the statement

[w]Aq ≤ [w]Ap

is equivalent to the fact∥∥w−1∥∥
Lq′−1(Q, dx

|Q| )
≤
∥∥w−1∥∥

Lp′−1(Q, dx
|Q| )

.

Property (7) is a consequence of part (a) of Exercise 1.1.3.
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To prove (8), apply Hölder’s inequality with exponents p and p′ to get

(Avg
Q

| f |)p =

(
1
|Q|

∫
Q
| f (x)|dx

)p

=

(
1
|Q|

∫
Q
| f (x)|w(x)

1
p w(x)−

1
p dx
)p

≤ 1
|Q|p

(∫
Q
| f (x)|pw(x)dx

)(∫
Q

w(x)−
p′
p dx
) p

p′

=

(
1

w(Q)

∫
Q
| f (x)|pw(x)dx

)(
1
|Q|

∫
Q

w(x)dx
)(

1
|Q|

∫
Q

w(x)−
1

p−1 dx
)p−1

≤ [w]Ap

(
1

w(Q)

∫
Q
| f (x)|pw(x)dx

)
.

This argument proves the inequality ≥ in (8) when p > 1. In the case p = 1 the
obvious modification yields the same inequality. The reverse inequality follows by
taking f = (w+ ε)−p′/p as in (7.1.6) and letting ε → 0.

Applying (8) to the function f = χQ and putting λQ in the place of Q in (8), we
obtain

w(λQ)≤ λ
np[w]Apw(Q) ,

which says that w(x)dx is a doubling measure. This proves (9). □

Example 7.1.6. A positive measure dµ is called doubling if for some C < ∞,

µ(2B)≤Cµ(B) (7.1.22)

for all balls B. We show that the measures |x|a dx are doubling when a > −n. We
divide all balls B(x0,R) in Rn into two categories: balls of type I that satisfy |x0| ≥ 3R
and type II that satisfy |x0|< 3R. For balls of type I we observe that

∫
B(x0,2R)

|x|a dx ≤ vn(2R)n

{
(|x0|+2R)a when a ≥ 0,
(|x0|−2R)a when a < 0,∫

B(x0,R)
|x|a dx ≥ vnRn

{
(|x0|−R)a when a ≥ 0,
(|x0|+R)a when a < 0.

Since |x0| ≥ 3R, we have |x0|+2R ≤ 4(|x0|−R) and |x0|−2R ≥ 1
4 (|x0|+R), from

which (7.1.22) follows with C = 23n4|a|.
For balls of type II, we have |x0| ≤ 3R and we note two things: first∫

B(x0,2R)
|x|a dx ≤

∫
|x|≤5R

|x|a dx = cnRn+a,


