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It is an interesting observation that such functions are completely determined by
their values at the points x = k/2B, where k € Z"". We have the following result.

Theorem 6.6.9. (a) Let f in L'(R") be band limited on the cube [—B,B]". Then f
can be sampled by its values at the points x = k /2B, where k € Z". In particular, we
have ( )
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for almost all x € R".
(b) Suppose that f € L' (R") is band-limited on the cube [—B', B']" where 0 < B' < B.
Then f can be sampled by its values at the points x = k/2B, k € Z" as follows
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for some Schwartz function ® that depends on B,B'.

Proof. Since the function fis supported in [—B, B]", we use Exercise 6.6.2 to obtain
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Inserting this identity in the inversion formula
fo= [ FEemd,
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which holds for almost all x € R” since fis continuous and therefore integrable over
[—B,B]", we obtain
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This is exactly (6.6.18) when we change k to —k and thus part (a) is proved. For part
(b) we argue similarly, except that we replace y|_p g by @, where @ is smooth,
equal to 1 on [—B’, B']" and vanishes outside [—B, B]". Then we can insert the func-
tion dg(é) in (6.6.20) and instead of (6.6.21) we obtain the expression on the right
in (6.6.19). ]
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Remark 6.6.10. Identity (6.6.18) holds for any B” > B. In particular, we have
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for all x € R” whenever f is band-limited in [—B,B]". In particular, band-limited
functions in [—B, B]" can be sampled by their values at the points k/2B” for any
B" > B.

However, band-limited functions in [—B,B]" cannot be sampled by the points
k/2B' for any B' < B, as the following example indicates.

Example 6.6.11. For 0 < B’ < B, let f(x) = g(x)sin(2wB'x), where g is supported
in the interval [—(B — B'),B — B']. Then f is band limited in [—B, B], but it cannot
be sampled by its values at the points k/2B’, since it vanishes at these points and f
is not identically zero if g is not the zero function.

Next, we give a couple of results that relate the L” norm of a given function with
the ¢ norm (or quasi-norm) of its sampled values.

Theorem 6.6.12. Let f be a tempered” function whose Fourier transform is sup-
ported in the closed ball B(0,t) for some 0 <t < oo. Assume that f lies in L (R")
for some 0 < p < co. Then there is a constant C(n, p) such that
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Proof. The proof is based on the following fact, whose proof can be found in [131]
(Lemma 2.2.3). Let 0 < r < 0. Then there exists a constant C, = C;(n,r) such that
for all £ > 0 and for all €' functions u on R” whose distributional Fourier transform
is supported in the ball |§] <t we have
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where M denotes the Hardy—Littlewood maximal operator.

Notice that f is a € function since its Fourier transform is compactly supported.
Assuming (6.6.22), for each k € Z" and x € [0, 1]" we use the mean value theorem
to obtain
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We raise this inequality to the power p, we integrate over the cube [0, 1]", we sum
over k € Z", and then we take the 1/p power. Let ¢, = max(1,2"/7~!) and c(n,r,1) =

2 A function is called tempered if there are constants C,M such that |f(x)| < C (1 + [x|)¥ for all
x € R". Tempered functions are tempered distributions.
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V/nt(141y/n)"". The sum over k and the integral over [0, 1]" yield an integral over
R” and thus we obtain
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where the last step uses (6.6.22). We now select r = p/2 if p < o and r to be
any number if p = oo. The required inequality follows from the boundedness of the
Hardy-Littlewood maximal operator on L if p < o or on L™ if p = co. O

The next theorem could be considered a partial converse of Theorem 6.6.12.

Theorem 6.6.13. Suppose that an integrable function f has Fourier transform sup-
ported in the cube [—(1 —¢€), 1 — €]" for some 0 < € < 1/2. Furthermore, suppose
that the sequence of coefficients { f (k) }xezn lies in (P (Z") for some O < p < oo, Then
f lies in LP (R") and the following estimate is valid
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Proof. We fix a smooth function @ supported in [—%, %]" and equal to 1 on the
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smaller cube [—(5 — €), 5 — €]". Then we may write f = f * @, since @ is equal to
one on the support of f Writing fin terms of its Fourier series we have
FE) = Y Fe™ ey =Y f(-k)e™ ey
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Since f is integrable, f is continuous and thus integrable over [—%, %]” By Fourier
inversion we have
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for almost all x € R”. Inserting (6.6.25) in (6.6.24) we obtain
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