6.6 Wavelets and Sampling

It is an interesting observation that such functions are completely determined by their values at the points x = k/2B, where $k \in \mathbb{Z}^n$. We have the following result.

Theorem 6.6.9. (a) Let f in $L^1(\mathbb{R}^n)$ be band limited on the cube $[-B,B]^n$. Then f can be sampled by its values at the points x = k/2B, where $k \in \mathbb{Z}^n$. In particular, we have

$$f(x_1, \dots, x_n) = \sum_{k \in \mathbb{Z}^n} f\left(\frac{k}{2B}\right) \prod_{j=1}^n \frac{\sin(2\pi B x_j - \pi k_j)}{2\pi B x_j - \pi k_j}$$
(6.6.18)

for almost all $x \in \mathbf{R}^n$.

(b) Suppose that $f \in L^1(\mathbb{R}^n)$ is band-limited on the cube $[-B', B']^n$ where 0 < B' < B. Then f can be sampled by its values at the points x = k/2B, $k \in \mathbb{Z}^n$ as follows

$$f(x_1,\ldots,x_n) = \sum_{k \in \mathbb{Z}^n} f\left(\frac{k}{2B}\right) \Phi(x-k), \qquad (6.6.19)$$

for some Schwartz function Φ that depends on B, B'.

Proof. Since the function \hat{f} is supported in $[-B,B]^n$, we use Exercise 6.6.2 to obtain

$$\widehat{f}(\xi) = \frac{1}{(2B)^n} \sum_{k \in \mathbb{Z}^n} \widehat{f}\left(\frac{k}{2B}\right) e^{2\pi i \frac{k}{2B} \cdot \xi}$$
$$= \frac{1}{(2B)^n} \sum_{k \in \mathbb{Z}^n} f\left(-\frac{k}{2B}\right) e^{2\pi i \frac{k}{2B} \cdot \xi}$$

Inserting this identity in the inversion formula

$$f(x) = \int_{[-B,B]^n} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi \,,$$

which holds for almost all $x \in \mathbf{R}^n$ since \hat{f} is continuous and therefore integrable over $[-B,B]^n$, we obtain

$$f(x) = \int_{[-B,B]^n} \frac{1}{(2B)^n} \sum_{k \in \mathbb{Z}^n} f\left(-\frac{k}{2B}\right) e^{2\pi i \frac{k}{2B} \cdot \xi} e^{2\pi i x \cdot \xi} d\xi$$
$$= \sum_{k \in \mathbb{Z}^n} f\left(-\frac{k}{2B}\right) \frac{1}{(2B)^n} \int_{[-B,B]^n} e^{2\pi i (\frac{k}{2B} + x) \cdot \xi} d\xi$$
(6.6.20)

$$=\sum_{k\in\mathbb{Z}^n} f\left(-\frac{k}{2B}\right) \prod_{j=1}^n \frac{\sin(2\pi Bx_j + \pi k_j)}{2\pi Bx_j + \pi k_j}.$$
(6.6.21)

This is exactly (6.6.18) when we change k to -k and thus part (a) is proved. For part (b) we argue similarly, except that we replace $\chi_{[-B,B]^n}$ by $\widehat{\Phi}$, where $\widehat{\Phi}$ is smooth, equal to 1 on $[-B',B']^n$ and vanishes outside $[-B,B]^n$. Then we can insert the function $\widehat{\Phi}(\xi)$ in (6.6.20) and instead of (6.6.21) we obtain the expression on the right in (6.6.19).

Remark 6.6.10. Identity (6.6.18) holds for any B'' > B. In particular, we have

$$\sum_{k \in \mathbb{Z}^n} f\left(\frac{k}{2B}\right) \prod_{j=1}^n \frac{\sin(2\pi Bx_j - \pi k_j)}{2\pi Bx_j - \pi k_j} = \sum_{k \in \mathbb{Z}^n} f\left(\frac{k}{2B''}\right) \prod_{j=1}^n \frac{\sin(2\pi B''x_j - \pi k_j)}{2\pi B''x_j - \pi k_j}$$

for all $x \in \mathbf{R}^n$ whenever f is band-limited in $[-B,B]^n$. In particular, band-limited functions in $[-B,B]^n$ can be sampled by their values at the points k/2B'' for any $B'' \ge B$.

However, band-limited functions in $[-B,B]^n$ cannot be sampled by the points k/2B' for any B' < B, as the following example indicates.

Example 6.6.11. For 0 < B' < B, let $f(x) = g(x)\sin(2\pi B'x)$, where \hat{g} is supported in the interval [-(B - B'), B - B']. Then f is band limited in [-B, B], but it cannot be sampled by its values at the points k/2B', since it vanishes at these points and f is not identically zero if g is not the zero function.

Next, we give a couple of results that relate the L^p norm of a given function with the ℓ^p norm (or quasi-norm) of its sampled values.

Theorem 6.6.12. Let f be a tempered² function whose Fourier transform is supported in the closed ball $\overline{B(0,t)}$ for some $0 < t < \infty$. Assume that f lies in $L^p(\mathbb{R}^n)$ for some 0 . Then there is a constant <math>C(n, p) such that

$$\|\{f(k)\}_{k\in\mathbb{Z}^n}\|_{\ell^p(\mathbb{Z}^n)} \le C(n,p)(1+t)(1+t^{\frac{2n}{p}})\|f\|_{L^p(\mathbb{R}^n)}.$$

Proof. The proof is based on the following fact, whose proof can be found in [131] (Lemma 2.2.3). Let $0 < r < \infty$. Then there exists a constant $C_2 = C_2(n, r)$ such that for all t > 0 and for all C^1 functions u on \mathbb{R}^n whose distributional Fourier transform is supported in the ball $|\xi| \le t$ we have

$$\sup_{z \in \mathbf{R}^n} \frac{1}{t} \frac{|\nabla u(x-z)|}{(1+t|z|)^{\frac{n}{r}}} \le C_2 M(|u|^r)(x)^{\frac{1}{r}},$$
(6.6.22)

where *M* denotes the Hardy–Littlewood maximal operator.

Notice that f is a \mathscr{C}^{∞} function since its Fourier transform is compactly supported. Assuming (6.6.22), for each $k \in \mathbb{Z}^n$ and $x \in [0,1]^n$ we use the mean value theorem to obtain

$$\begin{aligned} |f(k)| &\leq |f(x+k)| + \sqrt{n} \sup_{z \in [0,1]^n} |\nabla f(z+k)| \\ &\leq |f(x+k)| + \sqrt{n} \sup_{z \in B(x+k,\sqrt{n})} |\nabla f(z)|. \end{aligned}$$

We raise this inequality to the power p, we integrate over the cube $[0,1]^n$, we sum over $k \in \mathbb{Z}^n$, and then we take the 1/p power. Let $c_p = \max(1,2^{1/p-1})$ and c(n,r,t) =

² A function is called tempered if there are constants C, M such that $|f(x)| \le C(1+|x|)^M$ for all $x \in \mathbf{R}^n$. Tempered functions are tempered distributions.

6.6 Wavelets and Sampling

 $\sqrt{nt}(1+t\sqrt{n})^{n/r}$. The sum over k and the integral over $[0,1]^n$ yield an integral over \mathbf{R}^n and thus we obtain

$$\begin{split} \left[\sum_{k\in\mathbf{Z}^{n}}|f(k)|^{p}\right]^{\frac{1}{p}} &\leq \left[\int_{\mathbf{R}^{n}}|f(x)+\sqrt{n}\sup_{z\in B(x,\sqrt{n})}|\nabla f(z)|^{p}\,dx\right]^{\frac{1}{p}} \\ &\leq c_{p}\left[\left\|f\right\|_{L^{p}}+\sqrt{n}\left(\int_{\mathbf{R}^{n}}\sup_{z\in B(0,\sqrt{n})}|\nabla f(x-z)|^{p}\,dx\right)^{\frac{1}{p}}\right] \\ &\leq c_{p}\left[\left\|f\right\|_{L^{p}}+c(n,r,t)\left(\int_{\mathbf{R}^{n}}\left\{\sup_{z\in B(0,\sqrt{n})}\frac{|\nabla f(x-z)|}{t(1+t|z|)^{\frac{n}{r}}}\right\}^{p}\,dx\right)^{\frac{1}{p}}\right] \\ &\leq c_{p}\left[\left\|f\right\|_{L^{p}}+c(n,r,t)\left(\int_{\mathbf{R}^{n}}\left\{\sup_{z\in \mathbf{R}^{n}}\frac{|\nabla f(x-z)|}{t(1+t|z|)^{\frac{n}{r}}}\right\}^{p}\,dx\right)^{\frac{1}{p}}\right] \\ &\leq c_{p}\left[\left\|f\right\|_{L^{p}}+c(n,r,t)C_{2}\left(\int_{\mathbf{R}^{n}}\left[M(|f|^{r})(x)\right]^{\frac{p}{r}}\,dx\right)^{\frac{1}{p}}\right], \end{split}$$

where the last step uses (6.6.22). We now select r = p/2 if $p < \infty$ and r to be any number if $p = \infty$. The required inequality follows from the boundedness of the Hardy-Littlewood maximal operator on L^2 if $p < \infty$ or on L^{∞} if $p = \infty$.

The next theorem could be considered a partial converse of Theorem 6.6.12.

Theorem 6.6.13. Suppose that an integrable function f has Fourier transform supported in the cube $[-(\frac{1}{2} - \varepsilon), \frac{1}{2} - \varepsilon]^n$ for some $0 < \varepsilon < 1/2$. Furthermore, suppose that the sequence of coefficients $\{f(k)\}_{k \in \mathbb{Z}^n}$ lies in $\ell^p(\mathbb{Z}^n)$ for some 0 . Then <math>f lies in $L^p(\mathbb{R}^n)$ and the following estimate is valid

$$\|f\|_{L^{p}(\mathbf{R}^{n})} \leq C_{n,p,\varepsilon} \|\{f(k)\}_{k}\|_{\ell^{p}(\mathbf{Z}^{n})}.$$
 (6.6.23)

Proof. We fix a smooth function $\widehat{\Phi}$ supported in $[-\frac{1}{2}, \frac{1}{2}]^n$ and equal to 1 on the smaller cube $[-(\frac{1}{2}-\varepsilon), \frac{1}{2}-\varepsilon]^n$. Then we may write $f = f * \Phi$, since $\widehat{\Phi}$ is equal to one on the support of \widehat{f} . Writing \widehat{f} in terms of its Fourier series we have

$$\widehat{f}(\xi) = \sum_{k \in \mathbb{Z}^n} \widehat{\widehat{f}}(k) e^{2\pi i k \cdot \xi} \chi_{[-\frac{1}{2}, \frac{1}{2}]^n} = \sum_{k \in \mathbb{Z}^n} f(-k) e^{2\pi i k \cdot \xi} \chi_{[-\frac{1}{2}, \frac{1}{2}]^n}$$
(6.6.24)

Since f is integrable, \hat{f} is continuous and thus integrable over $[-\frac{1}{2}, \frac{1}{2}]^n$. By Fourier inversion we have

$$f(x) = \int_{[-\frac{1}{2},\frac{1}{2}]^n} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi = \int_{[-\frac{1}{2},\frac{1}{2}]^n} \widehat{f}(\xi) \widehat{\Phi}(\xi) e^{2\pi i x \cdot \xi} d\xi$$
(6.6.25)

for almost all $x \in \mathbf{R}^n$. Inserting (6.6.25) in (6.6.24) we obtain

$$f(x) = \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^n} \sum_{k \in \mathbb{Z}^n} f(-k) e^{2\pi i k \cdot \xi} e^{2\pi i x \cdot \xi} \widehat{\Phi}(\xi) d\xi$$