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It is an interesting observation that such functions are completely determined by
their values at the points x = k/2B, where k ∈ Zn. We have the following result.

Theorem 6.6.9. (a) Let f in L1(Rn) be band limited on the cube [−B,B]n. Then f
can be sampled by its values at the points x = k/2B, where k ∈ Zn. In particular, we
have

f (x1, . . . ,xn) = ∑
k∈Zn

f
( k

2B

) n

∏
j=1

sin(2πBx j−πk j)

2πBx j−πk j
(6.6.18)

for almost all x ∈ Rn.
(b) Suppose that f ∈ L1(Rn) is band-limited on the cube [−B′,B′]n where 0<B′<B.
Then f can be sampled by its values at the points x = k/2B, k ∈ Zn as follows

f (x1, . . . ,xn) = ∑
k∈Zn

f
( k

2B

)
Φ(x− k) , (6.6.19)

for some Schwartz function Φ that depends on B,B′.

Proof. Since the function f̂ is supported in [−B,B]n, we use Exercise 6.6.2 to obtain

f̂ (ξ ) =
1

(2B)n ∑
k∈Zn

̂̂f ( k
2B

)
e2πi k

2B ·ξ

=
1

(2B)n ∑
k∈Zn

f
(
− k

2B

)
e2πi k

2B ·ξ .

Inserting this identity in the inversion formula

f (x) =
∫
[−B,B]n

f̂ (ξ )e2πix·ξ dξ ,

which holds for almost all x∈Rn since f̂ is continuous and therefore integrable over
[−B,B]n, we obtain

f (x) =
∫
[−B,B]n

1
(2B)n ∑

k∈Zn
f
(
− k

2B

)
e2πi k

2B ·ξ e2πix·ξ dξ

= ∑
k∈Zn

f
(
− k

2B

) 1
(2B)n

∫
[−B,B]n

e2πi( k
2B+x)·ξ dξ (6.6.20)

= ∑
k∈Zn

f
(
− k

2B

) n

∏
j=1

sin(2πBx j +πk j)

2πBx j +πk j
. (6.6.21)

This is exactly (6.6.18) when we change k to−k and thus part (a) is proved. For part
(b) we argue similarly, except that we replace χ[−B,B]n by Φ̂ , where Φ̂ is smooth,
equal to 1 on [−B′,B′]n and vanishes outside [−B,B]n. Then we can insert the func-
tion Φ̂(ξ ) in (6.6.20) and instead of (6.6.21) we obtain the expression on the right
in (6.6.19). �
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Remark 6.6.10. Identity (6.6.18) holds for any B′′ > B. In particular, we have

∑
k∈Zn

f
( k

2B

) n

∏
j=1

sin(2πBx j−πk j)

2πBx j−πk j
= ∑

k∈Zn
f
( k

2B′′

) n

∏
j=1

sin(2πB′′x j−πk j)

2πB′′x j−πk j

for all x ∈ Rn whenever f is band-limited in [−B,B]n. In particular, band-limited
functions in [−B,B]n can be sampled by their values at the points k/2B′′ for any
B′′ ≥ B.

However, band-limited functions in [−B,B]n cannot be sampled by the points
k/2B′ for any B′ < B, as the following example indicates.

Example 6.6.11. For 0 < B′ < B, let f (x) = g(x)sin(2πB′x), where ĝ is supported
in the interval [−(B−B′),B−B′]. Then f is band limited in [−B,B], but it cannot
be sampled by its values at the points k/2B′, since it vanishes at these points and f
is not identically zero if g is not the zero function.

Next, we give a couple of results that relate the Lp norm of a given function with
the `p norm (or quasi-norm) of its sampled values.

Theorem 6.6.12. Let f be a tempered2 function whose Fourier transform is sup-
ported in the closed ball B(0, t) for some 0 < t < ∞. Assume that f lies in Lp(Rn)
for some 0 < p≤ ∞. Then there is a constant C(n, p) such that∥∥{ f (k)}k∈Zn

∥∥
`p(Zn)

≤C(n, p)(1+ t)(1+ t
2n
p )
∥∥ f
∥∥

Lp(Rn)
.

Proof. The proof is based on the following fact, whose proof can be found in [131]
(Lemma 2.2.3). Let 0 < r < ∞. Then there exists a constant C2 =C2(n,r) such that
for all t > 0 and for all C 1 functions u on Rn whose distributional Fourier transform
is supported in the ball |ξ | ≤ t we have

sup
z∈Rn

1
t
|∇u(x− z)|
(1+ t|z|) n

r
≤C2 M(|u|r)(x)

1
r , (6.6.22)

where M denotes the Hardy–Littlewood maximal operator.
Notice that f is a C ∞ function since its Fourier transform is compactly supported.

Assuming (6.6.22), for each k ∈ Zn and x ∈ [0,1]n we use the mean value theorem
to obtain

| f (k)| ≤ | f (x+ k)|+
√

n sup
z∈[0,1]n

|∇ f (z+ k)|

≤ | f (x+ k)|+
√

n sup
z∈B(x+k,

√
n)
|∇ f (z)| .

We raise this inequality to the power p, we integrate over the cube [0,1]n, we sum
over k∈Zn, and then we take the 1/p power. Let cp =max(1,21/p−1) and c(n,r, t)=

2 A function is called tempered if there are constants C,M such that | f (x)| ≤C (1+ |x|)M for all
x ∈ Rn. Tempered functions are tempered distributions.
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√
nt(1+ t

√
n)n/r. The sum over k and the integral over [0,1]n yield an integral over

Rn and thus we obtain[
∑

k∈Zn
| f (k)|p

] 1
p ≤

[∫
Rn
| f (x)+

√
n sup

z∈B(x,
√

n)
|∇ f (z)|p dx

] 1
p

≤ cp

[∥∥ f
∥∥

Lp +
√

n
(∫

Rn
sup

z∈B(0,
√

n)
|∇ f (x− z)|p dx

) 1
p
]

≤ cp

[∥∥ f
∥∥

Lp + c(n,r, t)
(∫

Rn

{
sup

z∈B(0,
√

n)

|∇ f (x− z)|
t(1+ t|z|) n

r

}p

dx
) 1

p
]

≤ cp

[∥∥ f
∥∥

Lp + c(n,r, t)
(∫

Rn

{
sup
z∈Rn

|∇ f (x− z)|
t(1+ t|z|) n

r

}p

dx
) 1

p
]

≤ cp

[∥∥ f
∥∥

Lp + c(n,r, t)C2

(∫
Rn
[M(| f |r)(x)]

p
r dx
) 1

p
]
,

where the last step uses (6.6.22). We now select r = p/2 if p < ∞ and r to be
any number if p = ∞. The required inequality follows from the boundedness of the
Hardy-Littlewood maximal operator on L2 if p < ∞ or on L∞ if p = ∞. �

The next theorem could be considered a partial converse of Theorem 6.6.12.

Theorem 6.6.13. Suppose that an integrable function f has Fourier transform sup-
ported in the cube [−( 1

2 − ε), 1
2 − ε]n for some 0 < ε < 1/2. Furthermore, suppose

that the sequence of coefficients { f (k)}k∈Zn lies in `p(Zn) for some 0 < p≤∞. Then
f lies in Lp(Rn) and the following estimate is valid∥∥ f

∥∥
Lp(Rn)

≤Cn,p,ε
∥∥{ f (k)}k

∥∥
`p(Zn)

. (6.6.23)

Proof. We fix a smooth function Φ̂ supported in [− 1
2 ,

1
2 ]

n and equal to 1 on the
smaller cube [−( 1

2 − ε), 1
2 − ε]n. Then we may write f = f ∗Φ , since Φ̂ is equal to

one on the support of f̂ . Writing f̂ in terms of its Fourier series we have

f̂ (ξ ) = ∑
k∈Zn

̂̂f (k)e2πik·ξ
χ[− 1

2 ,
1
2 ]

n = ∑
k∈Zn

f (−k)e2πik·ξ
χ[− 1

2 ,
1
2 ]

n (6.6.24)

Since f is integrable, f̂ is continuous and thus integrable over [− 1
2 ,

1
2 ]

n. By Fourier
inversion we have

f (x) =
∫
[− 1

2 ,
1
2 ]

n
f̂ (ξ )e2πix·ξ dξ =

∫
[− 1

2 ,
1
2 ]

n
f̂ (ξ )Φ̂(ξ )e2πix·ξ dξ (6.6.25)

for almost all x ∈ Rn. Inserting (6.6.25) in (6.6.24) we obtain

f (x) =
∫
[− 1

2 ,
1
2 ]

n
∑

k∈Zn
f (−k)e2πik·ξ e2πix·ξ

Φ̂(ξ )dξ


