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which is easily shown to be in L1(Tn). Moreover, we have

Ĝ(m) = ĝ(m)

for all m ∈ Zn, where Ĝ(m) denotes the mth Fourier coefficient of G and ĝ(m) de-
notes the Fourier transform of g at ξ = m. If ĝ(m) = 0 for all m ∈ Zn \ {0}, then
all the Fourier coefficients of G (except for m = 0) vanish, which means that the
sequence {Ĝ(m)}m∈Zn lies in `1(Zn) and hence Fourier inversion applies. We con-
clude that for almost all x ∈ Tn we have

G(x) = ∑
m∈Zn

Ĝ(m)e2πim·x = Ĝ(0) = ĝ(0) =
∫

Rn
g(t)dt .

Conversely, if G is a constant, then Ĝ(m) = 0 for all m ∈ Zn \{0}, and so the same
holds for g. �

A consequence of the preceding proposition is the following.

Proposition 6.6.4. Let ϕ ∈ L2(Rn). Then the sequence

{ϕ(x− k)}k∈Zn (6.6.3)

forms an orthonormal set in L2(Rn) if and only if

∑
k∈Zn
|ϕ̂(ξ + k)|2 = 1 (6.6.4)

for almost all ξ ∈ Rn.

Proof. Observe that either (6.6.4) or the hypothesis that the sequence in (6.6.3) is
orthonormal implies that ‖ϕ‖L2 = 1. Also the orthonormality condition

∫
Rn

ϕ(x− k)ϕ(x− j)dx =

{
1 when j = k,
0 when j 6= k,

is equivalent to

∫
Rn

e−2πik·ξ
ϕ̂(ξ )e−2πi j·ξ ϕ̂(ξ )dξ = (|ϕ̂|2)̂(k− j) =

{
1 when j = k,
0 when j 6= k,

in view of Parseval’s identity. Proposition 6.6.3 with g(ξ ) = |ϕ̂(ξ )|2 gives that the
latter is equivalent to

∑
k∈Zn
|ϕ̂(ξ + k)|2 =

∫
Rn
|ϕ̂(t)|2 dt = 1

for almost all ξ ∈ Rn. �
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Corollary 6.6.5. Let ϕ ∈ L2(Rn) and suppose that the sequence

{ϕ(x− k)}k∈Zn (6.6.5)

forms an orthonormal set in L2(Rn). Then the measure of the support of ϕ̂ is at least
1, that is,

|supp ϕ̂| ≥ 1 . (6.6.6)

Moreover, if |supp ϕ̂|= 1, then |ϕ̂(ξ )|= 1 for almost all ξ ∈ supp ϕ̂ .

Proof. It follows from (6.6.4) that |ϕ̂| ≤ 1 for almost all ξ ∈ Rn and thus

|supp ϕ̂| ≥
∫

Rn
|ϕ̂(ξ )|2 dξ =

∫
[0,1)n

∑
k∈Zn
|ϕ̂(ξ + k)|2 dξ =

∫
[0,1)n

1dξ = 1 .

If equality holds in (6.6.6), then equality holds in the preceding inequality, and since
|ϕ̂| ≤ 1 a.e., it follows that |ϕ̂(ξ )|= 1 for almost all ξ in supp ϕ̂ . �

6.6.2 Construction of a Nonsmooth Wavelet

Having established these preliminary facts, we now start searching for examples of
wavelets. It follows from Corollary 6.6.5 that the support of the Fourier transform of
a wavelet must have measure at least 1. It is reasonable to ask whether this support
can have measure exactly 1. Example 6.6.6 indicates that this can indeed happen. As
dictated by the same corollary, the Fourier transform of such a wavelet must satisfy
|ϕ̂(ξ )| = 1 for almost all ξ ∈ supp ϕ̂ , so it is natural to look for a wavelet ϕ such
that ϕ̂ = χA for some set A. We can start by asking whether the function

ϕ̂ = χ[− 1
2 ,

1
2 ]

on R is an appropriate Fourier transform of a wavelet, but a moment’s thought shows
that the functions ϕµ,0 and ϕν ,0 cannot be orthogonal to each other when µ 6= 0.
The problem here is that the Fourier transforms of the functions ϕν ,k cluster near
the origin and do not allow for the needed orthogonality. We can fix this problem
by considering a function whose Fourier transform vanishes near the origin. Among
such functions, a natural candidate is

χ[−1,− 1
2 )
+χ( 1

2 ,1]
, (6.6.7)

which is indeed the Fourier transform of a wavelet.

Example 6.6.6. Let A = [−1,− 1
2 )
⋃
( 1

2 ,1] and define a function ϕ on R by setting

ϕ̂ = χA .
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Then we assert that the family of functions

{ϕν ,k(x)}k∈Z,ν∈Z = {2ν/2
ϕ(2ν x− k)}k∈Z,ν∈Z

is an orthonormal basis of L2(R) (i.e., the function ϕ is a wavelet). This is an exam-
ple of a wavelet with minimally supported frequency.

To verify this assertion, first note that {ϕ0,k}k∈Z is an orthonormal set, since
(6.6.4) is easily seen to hold. Dilating by 2ν , it follows that {ϕν ,k}k∈Z is also an
orthonormal set for every fixed ν ∈ Z. Next, observe that if µ 6= ν , then

supp ϕ̂ν ,k ∩ supp ϕ̂µ,l = /0 . (6.6.8)

This implies that the family {2ν/2ϕ(2ν x− k)}k∈Z,ν∈Z is also orthonormal.
Next, we observe that the completeness of {ϕν ,k}ν ,k∈Z is equivalent to that of

{ϕ̂ν ,k(ξ )}ν ,k∈Z = {2−ν/2e−2πikξ 2−ν

χ2ν A(ξ )}ν ,k∈Z. Let f ∈ L2(R), fix any ν ∈ Z,
and define

h(ξ ) = 2ν/2 f (2ν
ξ ).

Suppose that for all k ∈ Z,

0 = 〈 f , ϕ̂ν ,k〉=
∫

2ν A
f (ξ )2−ν/2e−2πikξ 2−ν

dξ

=
∫

A
2ν/2 f (2ν

ξ )e−2πikξ dξ

= 〈χAh,e−2πikξ 〉 .

Exercise 6.6.1(a) shows {e−2πikξ}k∈Z is an orthonormal basis of L2(A), and there-
fore χAh = 0 almost everywhere. From the definition of h it follows that χ2ν A f = 0
almost everywhere. Now suppose for all ν ,k ∈ Z

0 = 〈 f , ϕ̂ν ,k〉.

Then χ2ν A f = 0 almost everywhere for all ν ∈ Z. Since ∪ν∈Z2ν A = R \ {0}, it
follows that f = 0 almost everywhere. We conclude {ϕ̂ν ,k}ν ,k∈Z is complete.

6.6.3 Construction of a Smooth Wavelet

The wavelet basis of L2(R) constructed in Example 6.6.6 is forced to have slow
decay at infinity, since the Fourier transforms of the elements of the basis are non-
smooth. Smoothing out the function ϕ̂ but still expecting ϕ to be wavelet is a bit
tricky, since property (6.6.8) may be violated when µ 6= ν , and moreover, (6.6.4)
may be destroyed. These two obstacles are overcome by the careful construction of
the next theorem.


