6.5.4 Completion of the Proof

It remains to combine the previous ingredients to complete the proof of the theorem. Interpolating between the $L^2 \to L^2$ and $L^1 \to L^{1,\infty}$ estimates obtained in Lemmas 6.5.2 and 6.5.3, we obtain

$$\|\mathcal{M}_{j}(f)\|_{L^{p}(\mathbf{R}^{n})} \le C_{p} 2^{(\frac{n}{p}-(n-1))j} \|f\|_{L^{p}(\mathbf{R}^{n})}$$

for all $1 . When <math>\frac{n}{n-1} the series <math>\sum_{j=1}^{\infty} 2^{(\frac{n}{p} - (n-1))j}$ converges $(n \ge 3)$ yielding that $\mathscr{M}: L^p \to L^p$ for these p's. The case $\mathscr{M}: L^\infty \to L^\infty$ is easy, while boundedness of \mathscr{M} on L^p for $2 follows by interpolating between <math>L^2$ and L^∞ .

Exercises

6.5.1. Let m be in $L^1(\mathbf{R}^n) \cap L^\infty(\mathbf{R}^n)$ that satisfies $|m^\vee(x)| \le C(1+|x|)^{-n-\delta}$ for some $\delta > 0$. Show that the maximal multiplier

$$\mathcal{M}_m(f)(x) = \sup_{t>0} \left| \left(\widehat{f}(\xi) m(t\xi) \right)^{\vee}(x) \right|$$

is L^p bounded for all 1 .

6.5.2. Suppose that the function m is supported in the annulus $R \le |\xi| \le 2R$ and is bounded by A. Show that the g-function

$$G(f)(x) = \left(\int_0^\infty |(m(t\xi)\widehat{f}(\xi))^{\vee}(x)|^2 \frac{dt}{t}\right)^{\frac{1}{2}}$$

maps $L^2(\mathbf{R}^n)$ to $L^2(\mathbf{R}^n)$ with bound at most $A\sqrt{\log 2}$.

6.5.3. ([302]) Let A,a,b>0 with a+b>1. Use the idea of Lemma 6.5.2 to show that if $m(\xi)$ satisfies $|m(\xi)| \leq A(1+|\xi|)^{-a}$ and $|\nabla m(\xi)| \leq A(1+|\xi|)^{-b}$ for all $\xi \in \mathbf{R}^n$, then the maximal operator

$$\mathscr{M}_{m}(f)(x) = \sup_{t>0} \left| \left(\widehat{f}(\xi) \, m(t\xi) \right)^{\vee}(x) \right|$$

is bounded from $L^2(\mathbf{R}^n)$ to itself.

Hint: Use that

$$\mathcal{M}_m \leq \sum_{j=0}^{\infty} \mathcal{M}_{m,j}$$

where $\mathcal{M}_{m,j}$ corresponds to the multiplier $\varphi_j m$; here φ_j is as in (6.5.8). Show that

$$\|\mathcal{M}_{m,j}(f)\|_{L^{2}} \leq C \|\varphi_{j}m\|_{L^{\infty}}^{\frac{1}{2}} \|\varphi_{j}\widetilde{m}\|_{L^{\infty}}^{\frac{1}{2}} \|f\|_{L^{2}} \leq C 2^{j\frac{1-(a+b)}{2}} \|f\|_{L^{2}},$$

where $\widetilde{m}(\xi) = \xi \cdot \nabla m(\xi)$.