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≤
∫

Rn
S( f )(x)S(g)(x)dx (Cauchy–Schwarz inequality)

≤
∥∥S( f )

∥∥
Lp

∥∥S(g)
∥∥

Lp′ (Hölder’s inequality)

≤
∥∥S( f )

∥∥
Lp cp′,n

∥∥g
∥∥

Lp′ .

Taking the supremum over all functions g on Rn with Lp′ norm at most 1, we obtain
that f gives rise to a bounded linear functional on Lp′ . It follows by the Riesz repre-
sentation theorem that f must be an Lp function that satisfies the lower estimate in
(6.4.12). �

6.4.4 Almost Orthogonality Between the Littlewood–Paley
Operators and the Dyadic Martingale Difference Operators

Next, we discuss connections between the Littlewood–Paley operators ∆ j and the
dyadic martingale difference operators Dk. It turns out that these operators are al-
most orthogonal in the sense that the L2 operator norm of the composition Dk∆ j
decays exponentially as the indices j and k get farther away from each other.

For the purposes of the next theorem we define the Littlewood–Paley operators
∆ j as convolution operators with the function Ψ2− j , where

Ψ̂(ξ ) = Φ̂(ξ )− Φ̂(2ξ )

and Φ is a fixed radial Schwartz function whose Fourier transform Φ̂ is real-valued,
supported in the ball |ξ | < 2, and equal to 1 on the ball |ξ | < 1. In this case we
clearly have the identity

∑
j∈Z

Ψ̂(2− j
ξ ) = 1, ξ 6= 0 .

Then we have the following theorem.

Theorem 6.4.8. There exists a constant C such that for every k, j in Z the following
estimate on the operator norm of Dk∆ j : L2(Rn)→ L2(Rn) is valid:∥∥Dk∆ j

∥∥
L2(Rn)→L2(Rn)

=
∥∥∆ jDk

∥∥
L2(Rn)→L2(Rn)

≤C 2−
9
20 | j−k|. (6.4.16)

Proof. Since Ψ is a radial function, it follows that ∆ j is equal to its transpose oper-
ator on L2. Moreover, the operator Dk is also equal to its transpose. Thus

(Dk∆ j)
t = ∆ jDk

and it therefore suffices to prove only that∥∥Dk∆ j
∥∥

L2→L2 ≤C2−
1
2 | j−k| . (6.4.17)
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By a simple dilation argument it suffices to prove (6.4.17) when k = 0. In this
case we have the estimate∥∥D0∆ j

∥∥
L2→L2 =

∥∥E0∆ j−E−1∆ j
∥∥

L2→L2

≤
∥∥E0∆ j−∆ j

∥∥
L2→L2 +

∥∥E−1∆ j−∆ j
∥∥

L2→L2 ,

and since the Dk’s and ∆ j’s are self-transposes, we have∥∥D0∆ j
∥∥

L2→L2 =
∥∥∆ jD0

∥∥
L2→L2 =

∥∥∆ jE0−∆ jE−1
∥∥

L2→L2

≤
∥∥∆ jE0

∥∥
L2→L2 +

∥∥∆ jE−1
∥∥

L2→L2 .

Estimate (6.4.17) when k = 0 will be a consequence of the pair of inequalities∥∥E0∆ j−∆ j
∥∥

L2→L2 +
∥∥E−1∆ j−∆ j

∥∥
L2→L2 ≤C 2

j
2 for j ≤ 0, (6.4.18)∥∥∆ jE0

∥∥
L2→L2 +

∥∥∆ jE−1
∥∥

L2→L2 ≤C 2−
1
2 j for j ≥ 0. (6.4.19)

We start by proving (6.4.18). We consider only the term E0∆ j−∆ j, since the term
E−1∆ j−∆ j is similar. Let f ∈ L2(Rn). Then∥∥E0∆ j( f )−∆ j( f )

∥∥2
L2

= ∑
Q∈D0

∥∥ f ∗Ψ2− j −Avg
Q

( f ∗Ψ2− j)
∥∥2

L2(Q)

≤ ∑
Q∈D0

∫
Q

∫
Q
|( f ∗Ψ2− j)(x)− ( f ∗Ψ2− j)(t)|2 dt dx

≤ 3 ∑
Q∈D0

∫
Q

∫
Q

(∫
5
√

nQ
| f (y)||Ψ2− j(x− y)|dy

)2

dt dx

+3 ∑
Q∈D0

∫
Q

∫
Q

(∫
5
√

nQ
| f (y)||Ψ2− j(t− y)|dy

)2

dt dx

+3 ∑
Q∈D0

∫
Q

∫
Q

(∫
(5
√

nQ)c
| f (y)|2 jn+ j|∇Ψ(2 j(ξx,t − y))|dy

)2

dt dx,

where ξx,t lies on the line segment joining x and t. Applying the Cauchy-Schwarz
inequality to the first two terms, we see that the last expression is bounded by

C2 jn
∑

Q∈D0

∫
5
√

nQ
| f (y)|2 dy+CM22 j

∑
Q∈D0

∫
Q

(∫
Rn

2 jn| f (y)|dy
(1+2 j|x− y|)M

)2

dx ,

which is clearly controlled by C(2 jn+22 j)‖ f‖2
L2 ≤ 2C2 j‖ f‖2

L2 . This proves (6.4.18).
We now turn to the proof of (6.4.19). We work only with the term ∆ jE0, since

the other term can be treated similarly. We have
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∥∥2

L2 =
∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Ψ2− j ∗χQ)
∥∥∥2

L2

≤ 2
∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Ψ2− j ∗χQ)χ5
√

nQ

∥∥∥2

L2

+2
∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Ψ2− j ∗χQ)χ(5
√

nQ)c

∥∥∥2

L2
.

Since the functions appearing inside the sum in the first term have supports with
bounded overlap, we obtain∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Ψ2− j ∗χQ)χ5
√

nQ

∥∥∥2

L2
≤C ∑

Q∈D0

(Avg
Q
| f |)2∥∥Ψ2− j ∗χQ

∥∥2
L2 ,

and the crucial observation is that for any Q ∈D0 we have

∥∥Ψ2− j ∗χQ
∥∥2

L2 ≤C′
n

∑
r=1

∫
|ξr |≈2 j

|e2πiξr −1|2

|2πiξr|2
dξr

[
∏
l 6=r

∫ |e2πiξl −1|2

|2πiξl |2
dξl

]
≤C 2−

9
10 j,

a consequence of Plancherel’s identity and of the fact that in the region where ξr
is the largest variable of ξ = (ξ1, . . . ,ξn) we have |ξr| ≈ |ξ | ≈ 2 j on the support of
Ψ̂2− j(ξ ). Putting these observations together, we deduce∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Ψ2− j ∗χQ)χ3Q

∥∥∥2

L2
≤C ∑

Q∈D0

(Avg
Q
| f |)22−

9
10 j ≤C 2−

9
10 j∥∥ f

∥∥2
L2 ,

and the required conclusion will be proved if we can show that∥∥∥ ∑
Q∈D0

(Avg
Q

f )(Ψ 2− j ∗χQ)χ(3Q)c

∥∥∥2

L2
≤C2− j∥∥ f

∥∥2
L2 . (6.4.20)

We prove (6.4.20) by using an estimate based purely on size. Let cQ be the center of
the dyadic cube Q. For x /∈ 3Q we have the estimate

|(Ψ 2− j ∗χQ)(x)| ≤
CM2 jn

(1+2 j|x− cQ|)M ≤
CM2 jn

(1+2 j)M/2

1
(1+ |x− cQ|)M/2 ,

since both 2 j ≥ 1, and |x−cQ| ≥ 1. We now control the left-hand side of (6.4.20) by

2 j(2n−M)
∑

Q∈D0

∑
Q′∈D0

(Avg
Q
| f |)(Avg

Q′
| f |)

∫
Rn

CM dx

(1+|x−cQ|)
M
2 (1+|x−cQ′ |)

M
2

≤ 2 j(2n−M)
∑

Q∈D0

∑
Q′∈D0

(Avg
Q
| f |)(Avg

Q′
| f |)

(1+ |cQ− cQ′ |)
M
4

∫
Rn

CM dx

(1+|x−cQ|)
M
4 (1+|x−cQ′ |)

M
4

≤ 2 j(2n−M)
∑

Q∈D0

∑
Q′∈D0

CM

(1+ |cQ− cQ′ |)
M
4

(∫
Q
| f (y)|2 dy+

∫
Q′
| f (y)|2 dy

)
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≤CM2 j(2n−M)
∑

Q∈D0

∫
Q
| f (y)|2 dy

=CM2 j(2n−M)
∥∥ f
∥∥2

L2 .

By taking M large enough, we obtain (6.4.20) and thus (6.4.19). �

Exercises

6.4.1. (a) Prove that no dyadic cube in Rn contains the point 0 in its interior.
(b) Prove that every interval [a,b] is contained in the union of three dyadic intervals
of length less than b−a.
(c) Prove that every cube of length l in Rn is contained in the union of 3n dyadic
cubes, each having length less than l.

6.4.2. Let k ∈ Z. Show that the set [m2−k,(m+ s)2−k) is a dyadic interval if and
only if s = 2p for some p ∈ Z and m is an integer multiple of s.

6.4.3. Given a cube Q in Rn of side length `(Q) ≤ 2k−1 for some integer k, prove
that there is a dyadic cube DQ of side length 2k such that Q j σ +DQ for some
σ = (σ1, . . . ,σn), where σ j ∈ {0,2k/3,−2k/3}.

6.4.4. Show that the martingale maximal function f 7→ supk∈Z |Ek( f )| is weak type
(1,1) with constant at most 1.[
Hint: Use Exercise 2.1.12.

]
6.4.5. (a) Show that EN( f )→ f a.e. as N→ ∞ for all f ∈ L1

loc(R
n).

(b) Prove that EN( f )→ f in Lp as N→ ∞ for all f ∈ Lp(Rn) whenever 1 < p < ∞.

6.4.6. (a) Let k,k′ ∈Z be such that k 6= k′. Show that for functions f and g in L2(Rn)
we have 〈

Dk( f ),Dk′(g)
〉
= 0 .

(b) Conclude that for functions f j in L2(Rn) we have∥∥∥∑
j∈Z

D j( f j)
∥∥∥

L2(Rn)
=
(

∑
j∈Z

∥∥D j( f j)
∥∥2

L2(Rn)

) 1
2
.

(c) Let ∆ j and C be as in the statement of Theorem 6.4.8. Show that for any r ∈ Z
we have ∥∥∥∑

j∈Z
D j∆ j+rD j

∥∥∥
L2(Rn)→L2(Rn)

≤C 2−
9
20 |r| .

6.4.7. ([133]) Let D j, ∆ j be as in Theorem 6.4.8.
(a) Prove that the operator

Vr = ∑
j∈Z

D j∆ j+r

is bounded from L2(Rn) to itself with norm at most a multiple of 2−
9
20 |r|.
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(b) Show that Vr is Lp(Rn) bounded for all 1 < p < ∞ with a constant depending
only on p and n.
(c) Conclude that for each 1 < p < ∞ there is a constant cp > 0 such that Vr is
bounded on Lp(Rn) with norm at most a multiple of 2−cp |r|.[
Hint: Part (a): Write ∆ j = ∆ j∆̃ j, where ∆̃ j is another family of Littlewood–Paley

operators and use Exercise 6.4.6 (b). Part (b): Use duality and (6.1.21).
]

6.5 The Spherical Maximal Function

In this section we discuss yet another consequence of the Littlewood–Paley theory,
the boundedness of the spherical maximal operator.

6.5.1 Introduction of the Spherical Maximal Function

We denote throughout this section by dσ the normalized Lebesgue measure on the
sphere Sn−1. For f in S (Rn), 1≤ p≤ ∞, we define the maximal operator

M ( f )(x) = sup
t>0

∣∣∣∣∫Sn−1
f (x− tθ)dσ(θ)

∣∣∣∣. (6.5.1)

The operator M is called the spherical maximal function. It is unclear at this point
for which classes of Lp functions f the definition of M extends and for which values
of p < ∞ the maximal inequality∥∥M ( f )

∥∥
Lp(Rn)

≤Cp
∥∥ f
∥∥

Lp(Rn)
(6.5.2)

holds for all functions f ∈ Lp(Rn).
Spherical averages often make their appearance as solutions of partial differential

equations. For instance, the spherical average

u(x, t) =
1

4π

∫
S2

t f (x− ty)dσ(y) (6.5.3)

is a solution of the wave equation

∆x(u)(x, t) =
∂ 2u
∂ t2 (x, t) ,

u(x,0) = 0 ,
∂u
∂ t

(x,0) = f (x) ,
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in R3. The introduction of the spherical maximal function is motivated by the fact
that the related spherical average

u(x, t) =
1

4π

∫
S2

f (x− ty)dσ(y) (6.5.4)

solves Darboux’s equation

∆x(u)(x, t) =
∂ 2u
∂ t2 (x, t)+

2
t

∂u
∂ t

(x, t) ,

u(x,0) = f (x) ,

∂u
∂ t

(x,0) = 0 ,

in R3. It is rather remarkable that the Fourier transform can be used to study almost
everywhere convergence for several kinds of maximal averaging operators such as
the spherical averages in (6.5.4). This is achieved via the boundedness of the cor-
responding maximal operator; the maximal operator controlling the averages over
Sn−1 is given in (6.5.1).

Before we begin the analysis of the spherical maximal function, we recall that

d̂σ(ξ ) =
2π

|ξ | n−2
2

J n−2
2
(2π|ξ |) ,

as shown in Appendix B.4. Using the estimates in Appendices B.6 and B.7 and the
identity

d
dt

Jν(t) =
1
2
(Jν−1(t)− Jν+1(t))

derived in Appendix B.2, we deduce the crucial estimate

|d̂σ(ξ )|+ |∇d̂σ(ξ )| ≤ Cn

(1+ |ξ |) n−1
2

. (6.5.5)

Theorem 6.5.1. Let n≥ 3. For each n
n−1 < p≤ ∞, there is a constant Cp such that∥∥M ( f )

∥∥
Lp(Rn)

≤Cp
∥∥ f
∥∥

Lp(Rn)
(6.5.6)

holds for all f in S (Rn). Consequently, for all n
n−1 < p < ∞, M admits a bounded

extension on Lp, and for f ∈ Lp(Rn) we have

lim
t→0

1
ωn−1

∫
Sn−1

f (x− tθ)dσ(θ) = f (x) (6.5.7)

for almost all x ∈ Rn. Here we set ωn−1 = |Sn−1|.




