6.4 Haar System, Conditional Expectation, and Martingales

for all $k \in \mathbb{Z}$. We also define the *dyadic martingale difference operator* D_k as follows:

$$D_k(f) = E_k(f) - E_{k-1}(f),$$

also for $k \in \mathbb{Z}$.

Next we introduce the family of Haar functions.

Definition 6.4.4. For a dyadic interval $I = [m2^{-k}, (m+1)2^{-k})$ we define $I_L = [m2^{-k}, (m+\frac{1}{2})2^{-k})$ and $I_R = [(m+\frac{1}{2})2^{-k}, (m+1)2^{-k})$ to be the left and right parts of *I*, respectively. The function

$$h_I(x) = |I|^{-\frac{1}{2}} \chi_{I_L} - |I|^{-\frac{1}{2}} \chi_{I_R}$$

is called the Haar function associated with the interval I.

We remark that Haar functions are constructed in such a way that they have L^2 norm equal to 1. Moreover, the Haar functions have the following fundamental orthogonality property:

$$\int_{\mathbf{R}} h_{I}(x)h_{I'}(x) \, dx = \begin{cases} 0 & \text{when } I \neq I', \\ 1 & \text{when } I = I'. \end{cases}$$
(6.4.1)

To see this, observe that the Haar functions have L^2 norm equal to 1 by construction. Moreover, if $I \neq I'$, then either $I \cap I' = \emptyset$ or I, I' are related by proper inclusion, say we have $I' \subsetneq I$. Then I' is contained either in the left or in the right half of I, on either of which h_I is constant. Thus (6.4.1) follows.

We recall the notation

$$\langle f,g \rangle = \int_{\mathbf{R}} f(x)g(x)\,dx$$

valid for square integrable functions. Under this notation, (6.4.1) can be rewritten as $\langle h_I, h_{I'} \rangle = \delta_{I,I'}$, where the latter is 1 when I = I' and zero otherwise.

6.4.2 Relation Between Dyadic Martingale Differences and Haar Functions

We have the following result relating the Haar functions to the dyadic martingale difference operators in dimension one.

Proposition 6.4.5. *For every locally integrable function* f *on* \mathbf{R} *and for all* $k \in \mathbf{Z}$ *we have the identity*

$$D_k(f) = \sum_{I \in \mathscr{D}_{k-1}} \left\langle f, h_I \right\rangle h_I \tag{6.4.2}$$