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We now show that for all x 6= 0, the series ∑ j∈Z K j(x) converges to a function,
which we denote by K(x). Indeed, as a consequence of (6.2.15) we have that
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for any δ > 0, which implies that the function ∑ j>0 |K j(x)| is integrable away from
the origin and satisfies
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and from this it follows that
∫

δ≤|x|≤2δ ∑ j≤0 |K j(x)|dx < ∞.
We conclude that the series ∑ j∈Z K j(x) converges a.e. on Rn \{0} to a function

K(x) that coincides with the distribution W = m∨ on Rn \{0} and satisfies∫
δ≤|x|≤2δ

|K(x)|dx < ∞ .

We now prove that the function K = ∑ j∈Z K j (defined on Rn \ {0}) satisfies
Hörmander’s condition. It suffices to prove that for all y 6= 0 we have
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Fix a y ∈Rn \{0} and pick a k ∈Z such that 2−k ≤ |y| ≤ 2−k+1. The part of the sum
in (6.2.20) where j > k is bounded by
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where we used (6.2.15). The part of the sum in (6.2.20) where j ≤ k is bounded by
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using (6.2.16). Hörmander’s condition is satisfied for K, and we appeal to Theorem
5.3.3 (in fact the version in the footnote) to complete the proof of (6.2.13). �

Example 6.2.8. Let m be a smooth function away from the origin that is homoge-
neous of imaginary order, i.e., for some fixed τ real and all λ > 0 we have

m(λξ ) = λ
iτ m(ξ ) . (6.2.21)

Then m is an Lp Fourier multiplier for 1 < p < ∞. Indeed, differentiating both sides
of (6.2.21) with respect to ∂ α

ξ
we obtain
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and taking λ = |ξ |−1, we deduce condition (6.2.14) with Cα = sup|θ |=1 |∂ α m(θ)|.
An explicit example of such a function is m(ξ ) = |ξ |iτ . Another example is

m0(ξ1,ξ2,ξ3) =
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which is homogeneous of degree zero and also smooth on Rn \{0}.
Example 6.2.9. Let z be a complex numbers with Rez≥ 0. Then the functions

m1(ξ ) =

(
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)z

, m2(ξ ) =

(
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defined on Rn are Lp Fourier multipliers for 1 < p < ∞. To prove this assertion for
m1, we verify condition (6.2.14). To achieve this, introduce the function on Rn+1

M1(ξ1, . . . ,ξn, t) =
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where ξ = (ξ1, . . . ,ξn). Then M is homogeneous of degree 0 and smooth on
Rn+1 \{0}. The derivatives ∂ β M1 are homogeneous of degree −|β | and by the cal-
culation in the preceding example they satisfy |∂ β M1(ξ , t)| ≤ Cβ |(ξ , t)|−|β |, with
Cβ = sup|θ |=1 |∂ β M1(θ)|, whenever (ξ , t) 6= 0 and β is a multi index of n+1 vari-
ables. In particular, taking β = (α,0), we obtain∣∣∂ α1

ξ1
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M1(ξ1, . . . ,ξn, t)

∣∣≤ Cα
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and setting t = 1 we deduce that |∂ α m1(ξ )| ≤Cα(1+ |ξ |2)−|α|/2 ≤Cα |ξ |−|α|.


