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F oh is a holomorphic function on D, log|F o A is a subharmonic function on D.
Applying (1.3.35) to the function z — log |F (h(z))|, we obtain
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when z = pe’® and |z| = p < R. For R < |{| = 1 the hypothesis on F implies

log |F(h(Re'®)| < A¢®/ma 1021177 )
) 14RE
< Ae™ log|m| )
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Now |1 £Re?|? = (1 £ Rcos@)? +R*sin? ¢ > 1sin? @, since if R < 1/2 the first
term is at least 1/4 while if R > 1/2 the second term in the sum is at least %sin2 0.
Hence |1 £ Re'?| > 1|sing|, thus log|F (h(Re?))| < C|sin(p|’%. Now \sin(p\’%o
is integrable over [—7, 7], in view of the assumption Ty < 7. Moreover, the bound
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W&% < % holds for 1 > R > 1 (p +1). Fatou’s lemma (limsupg — =) yields
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Setting x = h(pe'®), we obtain that
Tix _ ; .
pei® = i1 (x) = ™ l.: _ cos.(ﬂ:x) _ COS.(TCX) o)
X 4 1 + sin(7x) 1 + sin(7x)

from which it follows that p = (cos(mx))/(1 + sin(nx)) and 8 = —x/2 when 0 <
x < %, while p = —(cos(7x)) /(1 +sin(7x)) and 6 = 71/2 when § < x < 1. In either
case we easily deduce that
1-p? sin(7x)
1—2pcos(60—¢@)+p? T + cos(mx) sin(@)

Using this we write (1.3.37) as
1 7 sin(7x)
log |F(x)] < ~— / .
og|F(x)] < 27 J -z 14 cos(mx) sin(@)
On the interval [—7,0) we use the change of variables it = h(e'?) or, equivalently,
¢'? = —tanh(7tt) — isech(7r). Observe that as @ ranges from —7 to 0, ¢ ranges from
+o0 to —eo. Furthermore, d@ = —msech(7r) dr. We have

log |F (h(e'?))|de. (1.3.38)

1 /0 sin(7x) ;
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L= sin(7x) .
2 /_m cosh(mt) — cos(mx) og|F (it)|dt

(1.3.39)
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On the interval (0, 7] we use the change of variables 1 +if = h(e'?) or, equivalently,
¢'? = —tanh(nt) 4 isech(mr). Observe that as ¢ ranges from O to 7, ¢ ranges from
—oo t0 +oo. Furthermore, d@ = mwsech(nt) dt. Similarly, we obtain

L= sin(7t) i
37 o Trcosm) sy 2 4o

(1.3.40)

sin(7x)
log |[F(1+it)|dt.
Z/m cosh(7t) 4 cos(7x) og|F(1+it)|

Adding (1.3.39) and (1.3.40) and using (1.3.38) we conclude the proof when y = 0.
We now consider the case where y # 0. Fix y # 0 and define the function G(z) =

F(z+1iy). Then G is analytic on the open strip S = {z € C: 0 < Rez < 1} and

continuous on its closure. Moreover, for some A < o and 0 < 7y < 7 we have

10g|G(z)| = log |F(z+iy)| < Ae®lm#] < geTbl pTolimz]

for all z € S. Then the case y = 0 for G (with A replaced by Ae®P) yields

|G(x)|§exp{sin(7tx)/°° [ log |G(ir)] N log|G(1 +ir)] )]dt}7

2 J_o | cosh(mt)—cos(mx)  cosh(mt)+cos(mx

which yields the required conclusion for any real y, since G(x) = F(x+iy), G(it) =
F(it+1iy), and G(1+it) = F(1 +it +iy). O

Exercises

1.3.1. Generalize Theorem 1.3.2 to the situation in which T is quasi-subadditive,
that is, it satisfies for some K > 0,

IT(f+ )| <K(TUNI+IT @),

for all f, g in the domain of 7. Prove that in this case, the constant A in (1.3.7) can
be taken to be K times the constant in (1.3.8).

1.3.2. Let (X,u), (¥,v) be two o-finite measure spaces. Let 1 < p < r < oo and
suppose that T be a linear operator defined on the space L0 (X )+ LP! (X ) and taking
values in the space of measurable functions on Y. Assume that 7 maps L' (X) to
L'*(Y) with norm Ay and L'(X) to L"(Y) with norm A;. Let 0 < py < pj < oo.
Prove that T maps L? to L” with norm at most

1
8(p—1)"7A, " A

[Hint: First interpolate between L' and L” using Theorem 1.3.2 and then interpolate
between L"> and L” using Theorem 1.3.4.}



