
44 1 Lp Spaces and Interpolation

F ◦ h is a holomorphic function on D, log |F ◦ h| is a subharmonic function on D.
Applying (1.3.35) to the function z 7→ log |F(h(z))|, we obtain
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when z = ρeiθ and |z|= ρ < R. For R < |ζ |= 1 the hypothesis on F implies
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Now |1±Reiϕ |2 = (1±Rcosϕ)2 +R2 sin2
ϕ ≥ 1

4 sin2
ϕ , since if R ≤ 1/2 the first

term is at least 1/4 while if R > 1/2 the second term in the sum is at least 1
4 sin2

ϕ .

Hence |1±Reiϕ | ≥ 1
2 |sinϕ|, thus log |F(h(Reiϕ))| ≤C |sinϕ|−
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is integrable over [−π,π], in view of the assumption τ0 < π . Moreover, the bound
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2 (ρ+1). Fatou’s lemma (limsupR→∞) yields
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Setting x = h(ρeiθ ), we obtain that
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from which it follows that ρ = (cos(πx))/(1+ sin(πx)) and θ = −π/2 when 0 <
x≤ 1

2 , while ρ =−(cos(πx))/(1+ sin(πx)) and θ = π/2 when 1
2 ≤ x < 1. In either

case we easily deduce that
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Using this we write (1.3.37) as

log |F(x)| ≤ 1
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On the interval [−π,0) we use the change of variables it = h(eiϕ) or, equivalently,
eiϕ =− tanh(πt)− isech(πt). Observe that as ϕ ranges from−π to 0, t ranges from
+∞ to −∞. Furthermore, dϕ =−π sech(πt)dt. We have
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(1.3.39)
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On the interval (0,π] we use the change of variables 1+ it = h(eiϕ) or, equivalently,
eiϕ = − tanh(πt)+ isech(πt). Observe that as ϕ ranges from 0 to π , t ranges from
−∞ to +∞. Furthermore, dϕ = π sech(πt)dt. Similarly, we obtain
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log |F(1+ it)|dt.
(1.3.40)

Adding (1.3.39) and (1.3.40) and using (1.3.38) we conclude the proof when y = 0.
We now consider the case where y 6= 0. Fix y 6= 0 and define the function G(z) =

F(z+ iy). Then G is analytic on the open strip S = {z ∈ C : 0 < Re z < 1} and
continuous on its closure. Moreover, for some A < ∞ and 0≤ τ0 < π we have

log |G(z)|= log |F(z+ iy)| ≤ Aeτ0|Im z+y| ≤ Aeτ0|y| eτ0|Im z|

for all z ∈ S. Then the case y = 0 for G (with A replaced by Aeτ0|y|) yields
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which yields the required conclusion for any real y, since G(x) = F(x+ iy), G(it) =
F(it + iy), and G(1+ it) = F(1+ it + iy). �

Exercises

1.3.1. Generalize Theorem 1.3.2 to the situation in which T is quasi-subadditive,
that is, it satisfies for some K > 0,

|T ( f +g)| ≤ K(|T ( f )|+ |T (g)|) ,

for all f , g in the domain of T . Prove that in this case, the constant A in (1.3.7) can
be taken to be K times the constant in (1.3.8).

1.3.2. Let (X ,µ), (Y,ν) be two σ -finite measure spaces. Let 1 < p < r ≤ ∞ and
suppose that T be a linear operator defined on the space Lp0(X)+Lp1(X) and taking
values in the space of measurable functions on Y . Assume that T maps L1(X) to
L1,∞(Y ) with norm A0 and Lr(X) to Lr(Y ) with norm A1. Let 0 < p0 < p1 ≤ ∞.
Prove that T maps Lp to Lp with norm at most
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Hint: First interpolate between L1 and Lr using Theorem 1.3.2 and then interpolate

between L
p+1

2 and Lr using Theorem 1.3.4.
]


