$F \circ h$ is a holomorphic function on D, $\log |F \circ h|$ is a subharmonic function on D. Applying (1.3.35) to the function $z \mapsto \log |F(h(z))|$, we obtain

$$\log|F(h(z))| \le \frac{1}{2\pi} \int_{-\pi}^{+\pi} \log|F(h(Re^{i\varphi}))| \frac{R^2 - \rho^2}{|Re^{i\varphi} - \rho e^{i\theta}|^2} d\varphi$$
(1.3.36)

when $z = \rho e^{i\theta}$ and $|z| = \rho < R$. For $R < |\zeta| = 1$ the hypothesis on *F* implies

$$\begin{split} \log |F(h(Re^{i\varphi}))| &\leq Ae^{\tau_0 \left| \operatorname{Im} \frac{1}{\pi l} \log \left(i \frac{1+R\zeta}{1-R\zeta} \right) \right|} \\ &\leq Ae^{\frac{\tau_0}{\pi} \left| \log \left| \frac{1+R\zeta}{1-R\zeta} \right| \right|} \\ &\leq A2^{\frac{\tau_0}{\pi}} \left[|1+R\zeta|^{-\frac{\tau_0}{\pi}} + |1-R\zeta|^{-\frac{\tau_0}{\pi}} \right]. \end{split}$$

Now $|1 \pm Re^{i\varphi}|^2 = (1 \pm R\cos\varphi)^2 + R^2\sin^2\varphi \ge \frac{1}{4}\sin^2\varphi$, since if $R \le 1/2$ the first term is at least 1/4 while if R > 1/2 the second term in the sum is at least $\frac{1}{4}\sin^2\varphi$. Hence $|1 \pm Re^{i\varphi}| \ge \frac{1}{2}|\sin\varphi|$, thus $\log|F(h(Re^{i\varphi}))| \le C|\sin\varphi|^{-\frac{\tau_0}{\pi}}$. Now $|\sin\varphi|^{-\frac{\tau_0}{\pi}}$ is integrable over $[-\pi,\pi]$, in view of the assumption $\tau_0 < \pi$. Moreover, the bound $\frac{R^2 - \rho^2}{|Re^{i\varphi} - \rho e^{i\theta}|^2} \le \frac{4}{1-\rho}$ holds for $1 > R > \frac{1}{2}(\rho+1)$. Fatou's lemma ($\limsup_R \to \infty$) yields

$$\log|F(h(\rho e^{i\theta}))| \le \frac{1}{2\pi} \int_{-\pi}^{+\pi} \log|F(h(e^{i\varphi}))| \frac{1-\rho^2}{1-2\rho\cos(\theta-\varphi)+\rho^2} d\varphi. \quad (1.3.37)$$

Setting $x = h(\rho e^{i\theta})$, we obtain that

$$\rho e^{i\theta} = h^{-1}(x) = \frac{e^{\pi i x} - i}{e^{\pi i x} + i} = -i \frac{\cos(\pi x)}{1 + \sin(\pi x)} = \left(\frac{\cos(\pi x)}{1 + \sin(\pi x)}\right) e^{-i(\pi/2)},$$

from which it follows that $\rho = (\cos(\pi x))/(1 + \sin(\pi x))$ and $\theta = -\pi/2$ when $0 < x \le \frac{1}{2}$, while $\rho = -(\cos(\pi x))/(1 + \sin(\pi x))$ and $\theta = \pi/2$ when $\frac{1}{2} \le x < 1$. In either case we easily deduce that

$$\frac{1-\rho^2}{1-2\rho\cos(\theta-\varphi)+\rho^2} = \frac{\sin(\pi x)}{1+\cos(\pi x)\sin(\varphi)}$$

Using this we write (1.3.37) as

$$\log|F(x)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(\pi x)}{1 + \cos(\pi x)\sin(\varphi)} \log|F(h(e^{i\varphi}))| d\varphi.$$
(1.3.38)

On the interval $[-\pi, 0)$ we use the change of variables $it = h(e^{i\varphi})$ or, equivalently, $e^{i\varphi} = -\tanh(\pi t) - i\operatorname{sech}(\pi t)$. Observe that as φ ranges from $-\pi$ to 0, t ranges from $+\infty$ to $-\infty$. Furthermore, $d\varphi = -\pi \operatorname{sech}(\pi t) dt$. We have

$$\frac{1}{2\pi} \int_{-\pi}^{0} \frac{\sin(\pi x)}{1 + \cos(\pi x)\sin(\varphi)} \log|F(h(e^{i\varphi}))| d\varphi$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin(\pi x)}{\cosh(\pi t) - \cos(\pi x)} \log|F(it)| dt.$$
(1.3.39)

1.3 Interpolation

On the interval $(0, \pi]$ we use the change of variables $1 + it = h(e^{i\varphi})$ or, equivalently, $e^{i\varphi} = -\tanh(\pi t) + i\operatorname{sech}(\pi t)$. Observe that as φ ranges from 0 to π , t ranges from $-\infty$ to $+\infty$. Furthermore, $d\varphi = \pi \operatorname{sech}(\pi t) dt$. Similarly, we obtain

$$\frac{1}{2\pi} \int_0^{\pi} \frac{\sin(\pi t)}{1 + \cos(\pi t)\sin(\varphi)} \log|F(h(e^{i\varphi}))| d\varphi$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin(\pi x)}{\cosh(\pi t) + \cos(\pi x)} \log|F(1+it)| dt.$$
(1.3.40)

Adding (1.3.39) and (1.3.40) and using (1.3.38) we conclude the proof when y = 0.

We now consider the case where $y \neq 0$. Fix $y \neq 0$ and define the function G(z) = F(z+iy). Then *G* is analytic on the open strip $S = \{z \in \mathbb{C} : 0 < \text{Re } z < 1\}$ and continuous on its closure. Moreover, for some $A < \infty$ and $0 \le \tau_0 < \pi$ we have

$$\log |G(z)| = \log |F(z+iy)| \le A e^{\tau_0 |\operatorname{Im} z+y|} \le A e^{\tau_0 |y|} e^{\tau_0 |\operatorname{Im} z|}$$

for all $z \in \overline{S}$. Then the case y = 0 for G (with A replaced by $Ae^{\tau_0|y|}$) yields

$$|G(x)| \le \exp\left\{\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log|G(it)|}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log|G(1+it)|}{\cosh(\pi t) + \cos(\pi x)}\right] dt\right\},\$$

which yields the required conclusion for any real y, since G(x) = F(x+iy), G(it) = F(it+iy), and G(1+it) = F(1+it+iy).

Exercises

1.3.1. Generalize Theorem 1.3.2 to the situation in which *T* is *quasi-subadditive*, that is, it satisfies for some K > 0,

$$|T(f+g)| \le K(|T(f)| + |T(g)|),$$

for all f, g in the domain of T. Prove that in this case, the constant A in (1.3.7) can be taken to be K times the constant in (1.3.8).

1.3.2. Let (X, μ) , (Y, v) be two σ -finite measure spaces. Let 1 and suppose that*T* $be a linear operator defined on the space <math>L^{p_0}(X) + L^{p_1}(X)$ and taking values in the space of measurable functions on *Y*. Assume that *T* maps $L^1(X)$ to $L^{1,\infty}(Y)$ with norm A_0 and $L^r(X)$ to $L^r(Y)$ with norm A_1 . Let $0 < p_0 < p_1 \le \infty$. Prove that *T* maps L^p to L^p with norm at most

$$8(p-1)^{-\frac{1}{p}}A_0^{\frac{\frac{1}{p}-\frac{1}{r}}{1-\frac{1}{r}}}A_1^{\frac{1-\frac{1}{p}}{1-\frac{1}{r}}}.$$

[*Hint:* First interpolate between L^1 and L^r using Theorem 1.3.2 and then interpolate between $L^{\frac{p+1}{2}}$ and L^r using Theorem 1.3.4.]