Exercises

6.1.1. Construct a Schwartz function Ψ that satisfies $\sum_{j \in \mathbb{Z}} |\widehat{\Psi}(2^{-j}\xi)|^2 = 1$ for all $\xi \in \mathbb{R}^n \setminus \{0\}$ and whose Fourier transform is supported in the annulus $\frac{6}{7} \le |\xi| \le 2$ and is equal to 1 on the annulus $1 \le |\xi| \le \frac{13}{7}$.

[*Hint*: Set $\widehat{\Psi}(\xi) = \eta(\xi) (\sum_{k \in \mathbb{Z}} |\eta(2^{-k}\xi)|^2)^{-1/2}$ for a suitable $\eta \in \mathscr{C}_0^{\infty}(\mathbb{R}^n)$.]

6.1.2. Suppose that Ψ is an integrable function on \mathbb{R}^n that satisfies $|\widehat{\Psi}(\xi)| \leq B \min(|\xi|^{\varepsilon}, |\xi|^{-\varepsilon'})$ for some $\varepsilon', \varepsilon > 0$. Show that for some constant $C_{\varepsilon,\varepsilon'} < \infty$ we have

$$\sup_{\boldsymbol{\xi}\in\mathbf{R}^n} \left(\int_0^\infty |\widehat{\Psi}(t\boldsymbol{\xi})|^2 \frac{dt}{t}\right)^{\frac{1}{2}} + \sup_{\boldsymbol{\xi}\in\mathbf{R}^n} \left(\sum_{j\in\mathbf{Z}} |\widehat{\Psi}(2^{-j}\boldsymbol{\xi})|^2\right)^{\frac{1}{2}} \le C_{\varepsilon,\varepsilon'}B.$$

6.1.3. Let Ψ be an integrable function on \mathbb{R}^n with mean value zero that satisfies

$$|\Psi(x)| \leq B(1+|x|)^{-n-\varepsilon}, \quad \int_{\mathbf{R}^n} |\Psi(x-y)-\Psi(x)| \, dx \leq B \, |y|^{\varepsilon'},$$

for some $B, \varepsilon', \varepsilon > 0$ and for all $y \neq 0$.

(a) Prove that $|\widehat{\Psi}(\xi)| \leq c_{n,\varepsilon,\varepsilon'} B \min(|\xi|^{\min(\frac{\varepsilon}{2},1)}, |\xi|^{-\varepsilon})$ for some constant $c_{n,\varepsilon,\varepsilon'}$ and conclude that (6.1.4) holds for p = 2.

(b) Deduce the validity of (6.1.4) and (6.1.5).

(c) If $\varepsilon < 1$ and the assumption $|\Psi(x)| \le B(1+|x|)^{-n-\varepsilon}$ is weakened to $|\Psi(x)| \le B|x|^{-n-\varepsilon}$ for all $x \in \mathbf{R}^n$, then show that $|\widehat{\Psi}(\xi)| \le c_{n,\varepsilon,\varepsilon'}B\min(|\xi|^{\frac{\varepsilon}{2}}, |\xi|^{-\varepsilon})$ and thus (6.1.4) and (6.1.5) are valid.

Hint: Part (a): Make use of the identity

$$\widehat{\Psi}(\xi) = \int_{\mathbf{R}^n} e^{-2\pi i x \cdot \xi} \Psi(x) \, dx = -\int_{\mathbf{R}^n} e^{-2\pi i x \cdot \xi} \Psi(x-y) \, dx \,,$$

where $y = \frac{1}{2} \frac{\xi}{|\xi|^2}$ when $|\xi| \ge 1$. For $|\xi| \le 1$ use the mean value property of Ψ to write $\widehat{\Psi}(\xi) = \int_{\mathbb{R}^n} \Psi(x) (e^{-2\pi i x \cdot \xi} - 1) dx$ and split the integral in the regions $|x| \le 1$ and $|x| \ge 1$. Part (b): If \vec{K} is defined by (6.1.13), then control the $\ell^2(\mathbb{Z})$ norm by the $\ell^1(\mathbb{Z})$ norm to prove (6.1.16). Then split the sum $\sum_{j \in \mathbb{Z}} \int_{|x| \ge 2|y|} |\Psi_{2^{-j}}(x - y) - \Psi_{2^{-j}}(x)| dx$ into the parts $\sum_{2^j \le |y|^{-1}}$ and $\sum_{2^j > |y|^{-1}}$. Part (c): Notice that when $\varepsilon < 1$, we have $|\int_{|x| \le 1} \Psi(x) (e^{-2\pi i x \cdot \xi} - 1) dx| \le C_n B |\xi|^{\frac{\varepsilon}{2}}$.

6.1.4. Let Ψ be an integrable function on \mathbb{R}^n with mean value zero that satisfies

$$|\Psi(x)| \le B(1+|x|)^{-n-\varepsilon}, \quad \int_{\mathbf{R}^n} |\Psi(x-y)-\Psi(x)| \, dx \le B|y|^{\varepsilon'},$$

434

6.1 Littlewood-Paley Theory

for some $B, \varepsilon' > \varepsilon > 0$ and for all $y \neq 0$. Let $\Psi_t(x) = t^{-n}\Psi(x/t)$. (a) Prove that there are constants c_n, c'_n such that

$$\left(\int_0^\infty |\Psi_t(x)|^2 \frac{dt}{t} - dx\right)^{\frac{1}{2}} \le c_n B |x|^{-n},$$
$$\sup_{y \in \mathbf{R}^n \setminus \{0\}} \int_{|x| \ge 2|y|} \left(\int_0^\infty |\Psi_t(x-y) - \Psi_t(x)|^2 \frac{dt}{t}\right)^{\frac{1}{2}} dx \le c'_n B.$$

(b) Show that there exist constants C_n, C'_n such that for all $1 and for all <math>f \in L^p(\mathbf{R}^n)$ we have

$$\left\| \left(\int_0^\infty |f * \Psi_t|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \right\|_{L^p(\mathbf{R}^n)} \le C_n B \max(p, (p-1)^{-1}) \left\| f \right\|_{L^p(\mathbf{R}^n)}$$

and also for all $f \in L^1(\mathbf{R}^n)$ we have

$$\left\|\left(\int_0^\infty |f \ast \Psi_t|^2 \frac{dt}{t}\right)^{\frac{1}{2}}\right\|_{L^{1,\infty}(\mathbf{R}^n)} \le C'_n B \left\|f\right\|_{L^1(\mathbf{R}^n)}.$$

(c) Under the additional hypothesis that $0 < \int_0^\infty |\widehat{\Psi}(t\xi)|^2 \frac{dt}{t} = c_0$ for all $\xi \in \mathbf{R}^n \setminus \{0\}$, prove that for all $f \in L^p(\mathbf{R}^n)$ we have

$$\|f\|_{L^{p}(\mathbf{R}^{n})} \leq C_{n}^{\prime\prime} B \max(p, (p-1)^{-1}) \left\| \left(\int_{0}^{\infty} |f * \Psi_{t}|^{2} \frac{dt}{t} \right)^{\frac{1}{2}} \right\|_{L^{p}(\mathbf{R}^{n})}$$

[*Hint:* Part (a): Use the Cauchy-Schwarz inequality to obtain

$$\begin{split} \int_{|x|\geq 2|y|} \left(\int_0^\infty |\Psi_t(x-y) - \Psi_t(x)|^2 \frac{dt}{t} \right)^{\frac{1}{2}} dx \\ &\leq c_n |y|^{-\frac{\varepsilon}{2}} \left(\int_{|x|\geq 2|y|} |x|^{n+\varepsilon} \int_0^\infty |\Psi_t(x-y) - \Psi_t(x)|^2 \frac{dt}{t} dx \right)^{\frac{1}{2}}, \end{split}$$

and split the integral on the right into the regions $t \leq |y|$ and t > |y|. In the second region use that Ψ is bounded to replace the square by the first power. Part (b): Use Exercise 6.1.2 and part (a) of Exercise 6.1.3 and to deduce the inequality when p = 2. Then apply Theorem 5.6.1. Part (c): Prove the inequality first for $f \in \mathscr{S}(\mathbb{R}^n)$ using duality.]

6.1.5. Prove the following generalization of Theorem 6.1.2. Let A > 0. Suppose that $\{K_j\}_{j \in \mathbb{Z}}$ is a sequence of locally integrable functions on $\mathbb{R}^n \setminus \{0\}$ that satisfies

$$\begin{split} \sup_{x \neq 0} |x|^n \Big(\sum_{j \in \mathbf{Z}} |K_j(x)|^2\Big)^{\frac{1}{2}} &\leq A \;, \\ \sup_{y \in \mathbf{R}^n \setminus \{0\}} \int_{|x| \geq 2|y|} \Big(\sum_{j \in \mathbf{Z}} |K_j(x-y) - K_j(x)|^2\Big)^{\frac{1}{2}} \, dx \leq A < \infty \,, \end{split}$$