
434 6 Littlewood–Paley Theory and Multipliers

Exercises

6.1.1. Construct a Schwartz function Ψ that satisfies ∑ j∈Z |Ψ̂(2− jξ )|2 = 1 for all
ξ ∈ Rn \{0} and whose Fourier transform is supported in the annulus 6

7 ≤ |ξ | ≤ 2
and is equal to 1 on the annulus 1≤ |ξ | ≤ 13

7 .[
Hint: Set Ψ̂(ξ ) = η(ξ )

(
∑k∈Z |η(2−kξ )|2

)−1/2 for a suitable η ∈ C ∞
0 (Rn) .

]
6.1.2. Suppose that Ψ is an integrable function on Rn that satisfies |Ψ̂(ξ )| ≤
B min(|ξ |ε , |ξ |−ε ′) for some ε ′,ε > 0. Show that for some constant Cε,ε ′ < ∞ we
have

sup
ξ∈Rn

(∫
∞

0
|Ψ̂(tξ )|2 dt

t

) 1
2
+ sup

ξ∈Rn

(
∑
j∈Z
|Ψ̂(2− j

ξ )|2
) 1

2 ≤Cε,ε ′ B .

6.1.3. Let Ψ be an integrable function on Rn with mean value zero that satisfies

|Ψ(x)| ≤ B(1+ |x|)−n−ε ,
∫

Rn
|Ψ(x− y)−Ψ(x)|dx≤ B |y|ε ′ ,

for some B,ε ′,ε > 0 and for all y 6= 0.
(a) Prove that |Ψ̂(ξ )| ≤ cn,ε,ε ′ B min(|ξ |min( ε

2 ,1), |ξ |−ε) for some constant cn,ε,ε ′ and
conclude that (6.1.4) holds for p = 2.
(b) Deduce the validity of (6.1.4) and (6.1.5).
(c) If ε < 1 and the assumption |Ψ(x)| ≤ B(1+ |x|)−n−ε is weakened to |Ψ(x)| ≤
B |x|−n−ε for all x ∈ Rn, then show that |Ψ̂(ξ )| ≤ cn,ε,ε ′ B min(|ξ | ε2 , |ξ |−ε) and thus
(6.1.4) and (6.1.5) are valid.[
Hint: Part (a): Make use of the identity

Ψ̂(ξ ) =
∫

Rn
e−2πix·ξ

Ψ(x)dx =−
∫

Rn
e−2πix·ξ

Ψ(x− y)dx ,

where y = 1
2

ξ

|ξ |2 when |ξ | ≥ 1. For |ξ | ≤ 1 use the mean value property of Ψ to write

Ψ̂(ξ ) =
∫

RnΨ(x)(e−2πix·ξ − 1)dx and split the integral in the regions |x| ≤ 1 and
|x| ≥ 1. Part (b): If ~K is defined by (6.1.13), then control the `2(Z) norm by the `1(Z)
norm to prove (6.1.16). Then split the sum ∑ j∈Z

∫
|x|≥2|y|

∣∣Ψ2− j(x− y)−Ψ2− j(x)
∣∣dx

into the parts ∑2 j≤|y|−1 and ∑2 j>|y|−1 . Part (c): Notice that when ε < 1, we have

|
∫
|x|≤1Ψ(x)(e−2πix·ξ −1)dx| ≤Cn B |ξ | ε2 .

]
6.1.4. Let Ψ be an integrable function on Rn with mean value zero that satisfies

|Ψ(x)| ≤ B(1+ |x|)−n−ε ,
∫

Rn
|Ψ(x− y)−Ψ(x)|dx≤ B|y|ε ′ ,
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for some B,ε ′>ε > 0 and for all y 6= 0. Let Ψt(x) = t−nΨ(x/t). (a) Prove that there
are constants cn,c′n such that(∫

∞

0
|Ψt(x)|2

dt
t
−−dx
) 1

2
≤ cn B |x|−n ,

sup
y∈Rn\{0}

∫
|x|≥2|y|

(∫
∞

0
|Ψt(x− y)−Ψt(x)|2

dt
t

) 1
2

dx≤ c′n B .

(b) Show that there exist constants Cn,C′n such that for all 1 < p < ∞ and for all
f ∈ Lp(Rn) we have∥∥∥(∫ ∞

0
| f ∗Ψt |2

dt
t

)1
2
∥∥∥

Lp(Rn)
≤CnBmax(p,(p−1)−1)

∥∥ f
∥∥

Lp(Rn)

and also for all f ∈ L1(Rn) we have∥∥∥(∫ ∞

0
| f ∗Ψt |2

dt
t

)1
2
∥∥∥

L1,∞(Rn)
≤C′nB

∥∥ f
∥∥

L1(Rn)
.

(c) Under the additional hypothesis that 0<
∫

∞

0 |Ψ̂(tξ )|2 dt
t = c0 for all ξ ∈Rn \{0},

prove that for all f ∈ Lp(Rn) we have

∥∥ f
∥∥

Lp(Rn)
≤C′′n B max(p,(p−1)−1)

∥∥∥(∫ ∞

0
| f ∗Ψt |2

dt
t

)1
2
∥∥∥

Lp(Rn)[
Hint: Part (a): Use the Cauchy-Schwarz inequality to obtain∫

|x|≥2|y|

(∫
∞

0
|Ψt(x− y)−Ψt(x)|2

dt
t

) 1
2

dx

≤ cn|y|−
ε
2

(∫
|x|≥2|y|

|x|n+ε

∫
∞

0
|Ψt(x− y)−Ψt(x)|2

dt
t

dx
) 1

2
,

and split the integral on the right into the regions t ≤ |y| and t > |y|. In the second
region use that Ψ is bounded to replace the square by the first power. Part (b): Use
Exercise 6.1.2 and part (a) of Exercise 6.1.3 and to deduce the inequality when
p = 2. Then apply Theorem 5.6.1. Part (c): Prove the inequality first for f ∈S (Rn)
using duality.

]
6.1.5. Prove the following generalization of Theorem 6.1.2. Let A > 0. Suppose
that {K j} j∈Z is a sequence of locally integrable functions on Rn \{0} that satisfies

sup
x 6=0
|x|n
(

∑
j∈Z
|K j(x)|2

) 1
2 ≤ A ,

sup
y∈Rn\{0}

∫
|x|≥2|y|

(
∑
j∈Z
|K j(x− y)−K j(x)|2

)1
2

dx≤ A < ∞ ,


