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having used the definition of the adjoint (Section 2.5.2), the Cauchy–Schwarz in-
equality, Hölder’s inequality, and (6.1.4). Taking the supremum over all g in Lp′

with norm at most one, we obtain that the tempered distribution f −Q is a bounded
linear functional on Lp′ . By the Riesz representation theorem, f −Q coincides with
an Lp function whose norm satisfies the estimate∥∥ f −Q
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We now show uniqueness. If Q1 is another polynomial, with f −Q1 ∈ Lp, then
Q−Q1 must be an Lp function; but the only polynomial that lies in Lp is the zero
polynomial. This completes the proof of the converse of the theorem under hypoth-
esis (6.1.6).

To obtain the same conclusion under the hypothesis (6.1.7) we argue in a similar
way but we leave the details as an exercise. (One may adapt the argument in the
proof of Corollary 6.1.7 to this setting.) �

Remark 6.1.3. We make some observations. If Ψ̂ is real-valued, then the operators
∆ j are self-adjoint. Indeed,∫

Rn
∆ j( f )gdx =

∫
Rn

f̂ Ψ̂2− j ĝdξ =
∫

Rn
f̂ Ψ̂2− j ĝdξ =

∫
Rn

f ∆ j(g)dx .

Moreover, if Ψ is a radial function, we see that the operators ∆ j are self-transpose,
that is, they satisfy ∫

Rn
∆ j( f )gdx =

∫
Rn

f ∆ j(g)dx.

Assume now thatΨ is either radial or it has a real-valued Fourier transform. Suppose
also that Ψ satisfies (6.1.3) and that it has mean value zero. Then the inequality∥∥∥∑
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is true for sequences of functions { f j} j. To see this we use duality. Let

~T ( f ) = {∆ j( f )} j .

Then
~T ∗({g j} j) = ∑

j
∆ j(g j) .

Inequality (6.1.4) says that the operator ~T maps Lp(Rn,C) to Lp(Rn, `2), and its dual
statement is that ~T ∗ maps Lp′(Rn, `2) to Lp′(Rn,C). This is exactly the statement in
(6.1.21) if p is replaced by p′. Since p is any number in (1,∞), (6.1.21) is proved.
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6.1.2 Vector-Valued Analogues

We now obtain a vector-valued extension of Theorem 6.1.2. We have the following.

Proposition 6.1.4. Let Ψ be an integrable C 1 function on Rn with mean value zero
that satisfies (6.1.3) and let ∆ j be the Littlewood–Paley operator associated with Ψ .
Then there exists a constant Cn < ∞ such that for all 1 < p,r < ∞ and all sequences
of Lp functions f j we have∥∥∥(∑
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2
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,

where C̃p,r = max(p,(p− 1)−1)max(r,(r− 1)−1). Moreover, for some C′n > 0 and
all sequences of L1 functions f j we have∥∥∥(∑
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Proof. We introduce Banach spaces B1 =C and B2 = `2 and for f ∈ Lp(Rn) define
an operator

~T ( f ) = {∆k( f )}k∈Z .

In the proof of Theorem 6.1.2 we showed that ~T has a kernel ~K that satisfies con-
dition (6.1.16). Furthermore, ~T obviously maps Lr(Rn,C) to Lr(Rn, `2). Applying
Proposition 5.6.4, we obtain the first two statements of the proposition. Restricting
to k = j yields (6.1.22). �

6.1.3 Lp Estimates for Square Functions Associated with Dyadic
Sums

Let us pick a Schwartz function Ψ whose Fourier transform is compactly supported
in the annulus 2−1 ≤ |ξ | ≤ 22 such that (6.1.6) is satisfied. (Clearly (6.1.6) has
no chance of being satisfied if Ψ̂ is supported only in the annulus 1≤ |ξ | ≤ 2.) The
Littlewood–Paley operation f 7→∆ j( f ) represents the smoothly truncated frequency
localization of a function f near the dyadic annulus |ξ | ≈ 2 j. Theorem 6.1.2 says
that the square function formed by these localizations has Lp norm comparable to
that of the original function. In other words, this square function characterizes the
Lp norm of a function. This is the main feature of Littlewood–Paley theory.
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One may ask whether Theorem 6.1.2 still holds if the Littlewood–Paley operators
∆ j are replaced by their nonsmooth versions

f 7→
(
χ2 j≤|ξ |<2 j+1 f̂ (ξ )

)∨(x). (6.1.23)

This question has a surprising answer that already signals that there may be some
fundamental differences between one-dimensional and higher-dimensional Fourier
analysis. The square function formed by the operators in (6.1.23) can be used to
characterize Lp(R) in the same way ∆ j did, but not Lp(Rn) when n > 1 and p 6= 2.
The problem lies in the fact that the characteristic function of the unit disk is not
an Lp multiplier on Rn when n ≥ 2 unless p = 2; see Section 5.1 in [131]. The
one-dimensional result we alluded to earlier is the following.

For j ∈ Z we introduce the one-dimensional operator

∆
#
j ( f )(x) = ( f̂ χI j)

∨(x) , (6.1.24)

where
I j = [2 j,2 j+1)∪ (−2 j+1,−2 j] ,

and ∆ #
j is a version of the operator ∆ j in which the characteristic function of the set

2 j ≤ |ξ |< 2 j+1 replaces the function Ψ̂(2− jξ ).

Theorem 6.1.5. There exists a constant C1 such that for all 1 < p < ∞ and all f in
Lp(R) we have∥∥ f
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Proof. Pick a Schwartz function ψ on the line whose Fourier transform is supported
in the set 2−1 ≤ |ξ | ≤ 22 and is equal to 1 on the set 1 ≤ |ξ | ≤ 2. Let ∆ j be the
Littlewood–Paley operators associated with ψ . Observe that ∆ j∆

#
j = ∆ #

j ∆ j = ∆ #
j ,

since ψ̂ is equal to one on the support of ∆ #
j ( f )̂ . We now use Exercise 5.6.1(a) to
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where the last inequality follows from Theorem 6.1.2. The reverse inequality for
1< p<∞ follows just like the reverse inequality (6.1.8) of Theorem 6.1.2 by simply
replacing the ∆ j’s by the ∆ #

j ’s and setting the polynomial Q equal to zero. (There is
no need to use the Riesz representation theorem here, just the fact that the Lp norm
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of f can be realized as the supremum of expressions |〈 f ,g〉| where g has Lp′ norm
at most 1.) �

There is a higher-dimensional version of Theorem 6.1.5 with dyadic rectan-
gles replacing the dyadic intervals. As has already been pointed out, the higher-
dimensional version with dyadic annuli replacing the dyadic intervals is false.

Let us introduce some notation. For j ∈ Z, we denote by I j the dyadic set
[2 j,2 j+1)

⋃
(−2 j+1,−2 j] as in the statement of Theorem 6.1.5. For j1, . . . , jn ∈ Z

define a dyadic rectangle

R j1,..., jn = I j1 ×·· ·× I jn

in Rn. Actually R j1,..., jn is not a rectangle but a union of 2n rectangles; with some
abuse of language we still call it a rectangle. For notational convenience we write

Rj = R j1,..., jn , where j = ( j1, . . . , jn) ∈ Zn.

Observe that for different j, j′ ∈ Zn the rectangles Rj and Rj′ have disjoint interiors
and that the union of all the Rj’s is equal to Rn minus the coordinate planes x j = 0
for some j. In other words, the family of Rj’s, where j ∈ Zn, forms a tiling of Rn,
which we call the dyadic decomposition of Rn. We now introduce operators

∆
#
j ( f )(x) = ( f̂ χRj)

∨(x) , (6.1.26)

and we have the following n-dimensional extension of Theorem 6.1.5.

Theorem 6.1.6. For a Schwartz function ψ on the line with integral zero we define
the operator

∆j( f )(x) =
(
ψ̂(2− j1 ξ1) · · · ψ̂(2− jn ξn) f̂ (ξ )

)∨
(x) , (6.1.27)

where j = ( j1, . . . , jn) ∈ Zn. Then there is a dimensional constant Cn such that∥∥∥( ∑
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Lp(Rn)

. (6.1.28)

Let ∆ #
j be the operators defined in (6.1.26). Then there exists a positive constant Cn

such that for all 1 < p < ∞ and all f ∈ Lp(Rn) we have∥∥ f
∥∥

Lp(Rn)

Cn(p+ 1
p−1 )
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. (6.1.29)

Proof. We first prove (6.1.28). Note that if j = ( j1, . . . , jn) ∈ Zn, then the operator
∆j is equal to

∆j( f ) = ∆
(1)
j1
· · ·∆ (n)

jn ( f ) ,
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where the ∆
(r)
jr are one-dimensional operators given on the Fourier transform by

multiplication by ψ̂(2− jr ξr), with the remaining variables fixed. Inequality in (6.1.28)
is a consequence of the one-dimensional case. For instance, we discuss the case
n = 2. Using Proposition 6.1.4, we obtain∥∥∥( ∑
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where we also used Theorem 6.1.2 in the calculation. Higher-dimensional versions
of this estimate may easily be obtained by induction.

We now turn to the upper inequality in (6.1.29). We pick a Schwartz function ψ

whose Fourier transform is supported in the union [−4,−1/2]
⋃
[1/2,4] and is equal

to 1 on [−2,−1]
⋃
[1,2]. Then we clearly have

∆
#
j = ∆

#
j ∆j ,

since ψ̂(2− j1ξ1) · · · ψ̂(2− jnξn) is equal to 1 on the rectangle Rj. We now use Exercise
5.6.1(b) and estimate (6.1.28) to obtain∥∥∥( ∑
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|∆ #
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The lower inequality in (6.1.29) for 1 < p < ∞ is proved like inequality (6.1.8) in
Theorem 6.1.2. The fundamental ingredient in the proof is that f = ∑j∈Zn ∆ #

j ∆ #
j ( f )

for all Schwartz functions f whose Fourier transform is compactly supported away
from the coordinate planes, where the sum is interpreted as the L2-limit of the se-
quence of partial sums. Thus the series converges in S ′, and pairing with a Schwartz
function g, we obtain the lower inequality in (6.1.29) for Schwartz functions, by
applying the steps that prove (6.1.20) (with Q = 0). To prove the lower inequality
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in (6.1.29) for a general function f ∈ Lp(Rn), we approximate it in Lp by a sequence
of Schwartz functions whose Fourier transform is compactly supported away from
the coordinate planes. Then both sides of the lower inequality in (6.1.29) for the ap-
proximating sequence converge to the corresponding sides of the lower inequality
in (6.1.29) for f ; the convergence of the sequence of Lp norms of the square func-
tions requires the upper inequality in (6.1.29) that was previously established. This
concludes the proof of the theorem. □

Next we observe that if the Schwartz function ψ is suitably chosen, then the
reverse inequality in estimate (6.1.28) also holds. More precisely, suppose ψ̂(ξ ) is
an even smooth real-valued function supported in the set 9

10 ≤ |ξ | ≤ 21
10 in R that

satisfies
∑
j∈Z

ψ̂(2− j
ξ ) = 1, ξ ∈ R\{0}; (6.1.30)

then we have the following.

Corollary 6.1.7. Suppose that ψ satisfies (6.1.30) and let ∆j be as in (6.1.27). Let f

be an Lp function on Rn such that the function
(

∑j∈Zn |∆j( f )|2
)1

2 is in Lp(Rn). Then
there is a constant Cn that depends only on the dimension and ψ such that the lower
estimate ∥∥ f
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n
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holds.

Proof. If we had ∑ j∈Z |ψ̂(2− jξ )|2 = 1 instead of (6.1.30), then we could apply the
method used in the lower estimate of Theorem 6.1.2 to obtain the required conclu-
sion. In this case we provide another argument that is very similar in spirit.

We first prove (6.1.31) for Schwartz functions f . Then the series ∑ j∈Zn ∆j( f )
converges in L2 (and hence in S ′) to f . Now let g be another Schwartz function.
We express the inner product

〈
f ,g
〉

as the action of the distribution ∑j∈Zn ∆j( f ) on
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