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where we used (5.6.12). This combined with (5.6.10) implies the required conclu-

sion whenever r < e and p € (1,min(r,2)) U (r,e). The remaining p’s follow by
interpolation (Exercise 5.5.1 or Exercise 5.5.3 (a)). O

5.6.2 Applications

We proceed with some applications. An important consequence of Theorem 5.6.1 is
the following:

Corollary 5.6.2. Let A,B > 0 and let W; be a sequence of tempered distributions
on R" whose Fourier transforms are uniformly bounded functions (i.e., |ﬁ/\j| < B).
Suppose that for each j, W; is related as in (5.3.7) to a function K; on R"\ {0} that
satisfies
Kj(x)| <Al]x™",  x#0, (5.6.14)
lim Kj(x)dx=Lj, (5.6.15)
&—0J1>|x|>g

for some complex constant L;, and

sup / sup |Kj(x—y) — K;(x)|dx <A. (5.6.16)
yER"\{O} [x[>2py]

Then there are constants Cy,,C), > 0 such that for all 1 < p,r < o we have
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where ¢(p,r) = max(p,(p—1)"")ymax(r,(r—1)~").

Proof. Let T; be the operator given by convolution with the distribution W;. Clearly
T; is L? bounded with norm at most B. It follows from Theorem 5.3.3 that the 7’s
are of weak type (1, 1) and also bounded on L" with bounds at most a dimensional
constant multiple of max(r, (r — 1)~')(A + B), uniformly in j. We fix N € Z, we
set B =By =, =" ({—N,....N}), and we define

({fj}]) {W *f/}J
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for {f;}; € L'(R",£}). It is immediate to verify that 7 maps L'"(R",£}) to itself

with norm at most a dimensional constant multiple of max(r, (r—1)~')(A +B). The
kernel of T is K in L(¢},,¢},) defined by

R(x)({1;}7) = {K; (015}, {1j}; €ty
Obviously, we have

|K(x—y)—K(x)

0 —sgr S sup IK/(‘x_y)_KJ(‘x)|7
NN =N

and therefore condition (5.6.3) holds for Kasa consequence of (5.6.16). Moreover,
(5.6.1) and (5.6.2) with Ky = {L;}; are also valid for this K, in view of assumptions
(5.6.14) and (5.6.15). Finally, the conclusions with the indices restricted by | j| <N
follow from Theorem 5.6.1, and letting N 1 « we deduce the claimed estimates. []

If all the W;’s are equal, we obtain the following corollary, which contains in
particular the inequality (5.5.16) mentioned earlier.

Corollary 5.6.3. Let W be an element of ' (R") whose Fourier transform is a func-
tion bounded in absolute value by some B > 0. Suppose that W is related as in (5.3.7)
to a locally integrable function K on R"\ {0} that satisfies

K(x)| <Alx|™, x#0,
|

lim K(x)dx=L,
£—0./g <[x|<1
and
sup / K(x—y) — K(x)|dx < A. (5.6.17)
yeR"M\{0} / [x[>2]y|

Let T be the operator given by convolution with W. Then there exist constants
C,,C, > 0 such that for all 1 < p,r < o we have that
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where c(p,r) =max(p, (p—1)"")Ymax(r, (r— 1)~1). In particular, these inequalities
are valid for the Hilbert transform and the Riesz transforms.

Interestingly enough, we can use the very statement of Theorem 5.6.1 to obtain
its corresponding vector-valued version.

Proposition 5.6.4. Let let 1 < p,r < oo and let 5B and P be two Banach spaces.
Suppose that T given by (5.6.4) is a bounded linear operator from L"(R", %) to
L"(R", %,) with norm B = B(r). Also assume that for all x € R"\ {0}, K(x) is a
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bounded linear operator from 9B\ to P, that satisfies conditions (5.6.1) , (5.6.2),
(5.6.3) for some A > 0 and Ky € L(%B1,%,). Then there exist positive constants
Cy,C,, such that for all \-valued functions F; we have
1
I ) L'(R?)’

[(ZireL,)
[(EIEDLL) ey < S4B (Z L)

where ¢(p) = max(p, (p—1)71).

e <C,’1(A+B)H(;|
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Proof. Let us denote by ¢"(,) the Banach space of all #;-valued sequences {u;};

that satisfy
N
() = (ZH”JH@J’ <
J
Now consider the operator S defined on L’ (R",£" (%)) b
SUF} ) ={T ()}

It is obvious that S maps L"(R",£"(%1)) to L"(R",{"(%,)) with norm at most B.
Moreover, S has kernel K (x) € L(¢"(1),0" (%)) given by

K(x)({u})) = {K) ()},

where K is the kernel of 7. It is not hard to verify that for x € R"\ {0} we have

[[{u;}

=

HE(") (B))—r (By) — K@),

7

hence for x # y € R" we also have

IK(x—y) - K(x)

= [|K(x—y) -

(Bt (%) K(x) H%fﬁ% :

Moreover, if we define K € L(0"(%)),0(%,)) b

Ko({uj};) = {Ko(uy)} .

for {u;}; € "(%), then we have

lim K(y)dy=
k—eo g <|y|<1
in L(é%:@] ),fr(z%)z));
We conclude that K satisfies conditions (5.6.1) , (5.6.2), (5.6.3). Hence the oper-

ator S associate with K satisfies the conclusion of Theorem 5.6.1, that is, the desired
inequalities for 7. (]
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5.6.3 Vector-Valued Estimates for Maximal Functions

Next, we discuss applications of vector-valued inequalities to some nonlinear opera-
tors. We fix an integrable function @ on R” and for ¢ > 0 define &, (x) =" P (" 'x).
We suppose that @ satisfies the following regularity condition:

sup / sup | P (x —y) — P (x)|dx =Ag < oo. (5.6.18)
yeRM\ {0} / [x[=2[y|

t>0

We consider the maximal operator

Mg (f)(x) = sup|(f + ;) (x)]

t>0

defined for f in L' 4 L*. We are interested in obtaining L” estimates for M. We
observe that the trivial estimate

Mo (f)]] o < 1P 11 £l (5.6.19)

holds when p = . It is natural to set
%, =C and %, =L"(R")

and view Mg as the linear operator f +— { f* Dg } 5+ that maps Z; -valued functions
to %,-valued functions.

To do this precisely, we fix and 8y > 0. Then for each x € R" we define a bounded
linear operator Ko (x) from 2, = C to %, = L™((8,)) by setting for ¢ € C

Ko (x)(c) = {c D5(x)}5-s, -

Clearly we have
HK@(X)HCﬁLw((go,m)) = sup |Ps(x)].

5>5(J

Now (5.6.18) implies condition (5.6.2) for the kernel I_('q,. Also, if for some C, & > 0,
|D(x)] < C(1+ |x])"" ¢ for all x, then (5.6.1) holds (for some A < <) since

sup | D (x)| < Alx[™".
6>0

Also condition (5.6.3) holds since

€20 Je<|y|<1

lim Ds(y) dy:/l‘ Ps(y)dy uniformly in & > .
V<1

We also define a #,-valued linear operator acting on complex-valued functions
on R" by
Mo (f) = f*Ko = {f*DPs}s-5,-

Obviously Mg maps L™ (R", %) to L (R", %,) with norm at most || ®||1.
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Applying Theorem 5.6.1 with r = oo we obtain for 1 < p < oo,
HM‘I’(f)HU’(R",ﬂ ) =G max(p,(p—1)~ )(A¢'+ ||¢||L1)HfHLP(R")’ (5.6.20)

which can be immediately improved to

Mo ()]

ey < Comax(L (r=1)71) (Ag + | @] 1) || £

L7 (RM) (5.6.21)
via interpolation with estimate (5.6.19) for all 1 < r < co. At this point we let & | 0
via the Lebesgue monotone convergence theorem and we deduce the same estimate
with & = 0.

Next we use estimate (5.6.21) to obtain vector-valued estimates for the sublinear
operator M.

Corollary 5.6.5. Let ® be an integrable function on R" that satisfies (5.6.18). Then
there exist dimensional constants C, and C), such that for all 1 < p,r < e the fol-
lowing vector-valued inequalities are valid:

H(Z'M‘P(ff”r)l’w <Cre(r) (Aot @) H(Zlf]’)' L 5622
J
where ¢(r) = 1+ (r—1)"', and
|(Zimatry) VI, < Cetvnatio)|(Sinr) |, . 6623
j

where c(p,r) = (1+(r—1)"") (p+(p—17").

Proof. We set 21 = C and %, = L*((8p, o)) as before. We use estimate (5.6.21)
as a starting point in Proposition 5.6.4, which immediately yields the required con-
clusions (5.6.22) and (5.6.23). Finally, we let &y | 0. U

Similar estimates hold for the Hardy—Littlewood maximal operator.

Theorem 5.6.6. For 1 < p,r < o the Hardy-Littlewood maximal function M satis-
fies the vector-valued inequalities

[(Emr)[,.. <cu+e-u(zir)
\szmwf D (Lisr)

where e(p.r) = (14 (r=1)~) (p + (= 1)),

Proof. Let us fix a positive radial symmetrically decreasing Schwartz function @ on
R” that satisfies ®@(x) > 1 when |x| < 1. Then the Hardy-Littlewood maximal func-
tion M(f) is pointwise controlled by a constant multiple of the function Mg (| f]).

(5.6.24)

1 )

(5.6.25)

P

L’
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In view of Corollary 5.6.5, it suffices to check that for such a @, (5.6.18) holds. First
observe that in view of the decreasing character of &, we have

sup | f |+ Py < Mo (|f]) < 2" sup|f]+ Dy,
J J

and for this reason we choose to work with the easier dyadic maximal operator
d
Mg (f) = sup|f* Py .
J

We observe the validity of the simple inequalties

2/7

27"M(f) <M(f) < M<p(|f|) —Ma(If1)- (5.6.26)
If we can show that
sup / sup | Dy (x —y) — Py (x)|dx = C, < o0, (5.6.27)
yER”\{O} [¥[=2ly| jez

then (5.6.22) and (5.6.23) are satisfied with Mg) replacing Mg. We therefore turn
our attention to (5.6.27). We have

[ s (x=3) = by, ()] dx
x=2lyl jez

< Z~/‘x‘22\y\ |¢2.f(x_y)_¢2_,‘(x)|dx

JEZ
¥ w@ﬁd+z/ (| (x— )|+ |y ()] dx
= Y 2j
o izl 20D 2/<lyl /20!
‘y‘ CNdx /
- / | Dy (x)|dx
2_/§|’y| xjz2ly 20007 (14277 (x — 6y)|) 2§fy\ sl
1yl Cn
=y ax+2 ¥ [ elds
2/§y| 2l 2007 (14277 1)V 21%}’\' 12277l
bl Cy “Jy[) N
- / RN 2 Y oy )
2ispy =277y 2 (14 <Y 2-’2}4

<tv Y 3 Iy‘ - +Cy
2f>|y|

§3CNa

where Cy > 0 depends on N > n, 6 € [0,1], and |x — Oy| > |x|/2 when |x| > 2]|y]|.
Now apply (5.6.22) and (5.6.23) to M% and use (5.6.26) to obtain the desired
vector-valued inequalities. U
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Remark 5.6.7. Observe that (5.6.24) and (5.6.25) also hold for r = . These end-
point estimates can be proved directly by observing that

su_pM(fj) SM(SUPVJD-
J J

The same is true for estimates (5.6.22) and (5.6.23). Finally, estimates (5.6.25) and
(5.6.23) also hold for p = r = oo,

Exercises

5.6.1. (a) For all j € Z, let I; be an interval in R and let 7; be the operator given
on the Fourier transform by multiplication by the characteristic function of /;. Prove
that there exists a constant C > 0 such that for all 1 < p,r < o and for all square
integrable functions f; on R we have

IS 1 g = ey oo o )0
IS, <Cmax<nr_:>u<;mf>f

(b) Let R; be arbitrary rectangles on R" with sides parallel to the axes and let S; be
the operators given on the Fourier transform by multiplication by the characteristic
functions of R;. Prove that there exists a dimensional constant C;, < oo such that for
all indices 1 < p,r < oo and for all square integrable functions f; in L”(R") we have

H(;|Sj(fj)|’>L M(R’l)gcnmax(r,%)"max(p,p ) (Z‘fjr)r

[Hint: Part (a): Use Theorem 5.5.1 and the identity 7; = %(M“HM_“ —MbHM_b),
if 1; is X(4,), Where M?(f)(x) = f (x)e?™* and H is the Hilbert transform. Part (b):
Apply the result in part (a) in each variable.]

LP

L'(R)

LP(R7)

5.6.2. Let (T,du) be a o-finite measure space. For every 7 € T, let R(¢) be a rect-
angle in R" with sides parallel to the axes such that the map ¢ — R(¢) is measurable.
Then there is a constant C,, > 0 such that for all 1 < p < oo and for all families of
square integrable functions { f; };cr on R” such that ¢ — f;(x) is measurable for all

x € R" we have
( r( [ 1hPane )

)
p

([ 1) Pau))”| < cmaxtpp-1)
T Lp
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[Hint: When n = 1 reduce matters to an L”(L*(T,d ), L*(T,d)) inequality for the
Hilbert transform, via the hint in the preceding exercise. Verify the inequality p =2
and then use Theorem 5.6.1 for the other p’s. Obtain the n-dimensional inequality
by iterating the one-dimensional.]

5.6.3. Let @ be a function on R” that satisfies sup,cg» |¥]"|P(x)| <A and
[ 1@ty -e@lar<a). [ |e@ldsnr?),
R" |x|>R

for all R > 1, where 7 is a continuous increasing function on [0,2] that satisfies
n(0) = Oandf 10) gt < oo,

(a) Prove that (5.6. 27) holds.

(b) Show that if @ lies in L' (R"), then the maximal function f + sup ez | * Pyl
maps L?(R") to itself for 1 < p < eo.

[Hint: Part (a): Modify the calculation in the proof of Theorem 5.6.6. Part (b): Use
Theorem 5.6.1 with r = oo ]

5.6.4. (a) On R, take f; = X[pi-1 2] to prove that inequality (5.6.25) fails when

p=oand 1 <r <oo.

(b) Againon R, take N >2 and f; = Xt iy for j=1,2,...,N to prove that (5.6.25)
N N

fails when 1 < p <o and r=1.

5.6.5. Let K be an integrable function on the real line and assume that the operator

f+— f*K is bounded on L”(R) for some 1 < p < oo. Prove that the vector-valued

inequality
1
[(ZiK=s)’

may fail in general when g < 1.
[Hint: Take K = x_y j and f; = Azt gy for 1< < N.]
’ N

< (e,
J

5.6.6. Let {Q;}; be a countable collection of cubes in R" with disjoint interiors.
Let ¢; be the center of the cube Q; and d; its diameter. For € > 0, define the
Marcinkiewicz function associated with the family {Q;}; as follows:
dVHrE
M (

Z |X7C |n+g dn+€
Prove that for some constants Cy, ¢ ;, and C, ¢ one has

1
HMSHLP SCn,&p(Z@j‘)pa p>
J

n+ée
e

e <Gue(Xl0i) "
J

and consequently [pn Me(x)dx < Cye X ;10|

n+e¢e’




