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≤ sup
‖G‖

Lp′ (Rn ,B∗2 )
≤1

∥∥~T ′(G)
∥∥

Lp′ (Rn,B∗1)
‖F‖Lp(Rn,B1)

≤Cn p(A+B?)‖F‖Lp(Rn,B1) ,

where we used (5.6.12). This combined with (5.6.10) implies the required conclu-
sion whenever r < ∞ and p ∈

(
1,min(r,2)

)
∪ (r,∞). The remaining p’s follow by

interpolation (Exercise 5.5.1 or Exercise 5.5.3 (a)). �

5.6.2 Applications

We proceed with some applications. An important consequence of Theorem 5.6.1 is
the following:

Corollary 5.6.2. Let A,B > 0 and let Wj be a sequence of tempered distributions
on Rn whose Fourier transforms are uniformly bounded functions (i.e., |Ŵj| ≤ B).
Suppose that for each j, Wj is related as in (5.3.7) to a function K j on Rn \{0} that
satisfies

|K j(x)| ≤ A |x|−n , x 6= 0, (5.6.14)

lim
εk→0

∫
1≥|x|≥εk

K j(x)dx = L j , (5.6.15)

for some complex constant L j, and

sup
y∈Rn\{0}

∫
|x|≥2|y|

sup
j
|K j(x− y)−K j(x)|dx≤ A . (5.6.16)

Then there are constants Cn,C′n > 0 such that for all 1 < p,r < ∞ we have∥∥∥(∑
j
|Wj ∗ f j|r

)1
r
∥∥∥

L1,∞
≤C′n max(r,(r−1)−1)(A+B)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

L1
,

∥∥∥(∑
j
|Wj ∗ f j|r

)1
r
∥∥∥

Lp
≤Cn c(p,r)(A+B)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

where c(p,r) = max(p,(p−1)−1)max(r,(r−1)−1).

Proof. Let Tj be the operator given by convolution with the distribution Wj. Clearly
Tj is L2 bounded with norm at most B. It follows from Theorem 5.3.3 that the Tj’s
are of weak type (1,1) and also bounded on Lr with bounds at most a dimensional
constant multiple of max(r,(r− 1)−1)(A+B), uniformly in j. We fix N ∈ Z+, we
set B1 = B2 = `r

N = `r({−N, . . . ,N}), and we define

~T ({ f j} j) = {Wj ∗ f j} j
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for { f j} j ∈ Lr(Rn, `r
N). It is immediate to verify that ~T maps Lr(Rn, `r

N) to itself
with norm at most a dimensional constant multiple of max(r,(r−1)−1)(A+B). The
kernel of ~T is ~K in L(`r

N , `
r
N) defined by

~K(x)({t j} j) = {K j(x)t j} j, {t j} j ∈ `r
N .

Obviously, we have∥∥~K(x− y)−~K(x)
∥∥
`r

N→`r
N
≤ sup
| j|≤N
|K j(x− y)−K j(x)| ,

and therefore condition (5.6.3) holds for ~K as a consequence of (5.6.16). Moreover,
(5.6.1) and (5.6.2) with ~K0 = {L j} j are also valid for this ~K, in view of assumptions
(5.6.14) and (5.6.15). Finally, the conclusions with the indices restricted by | j| ≤ N
follow from Theorem 5.6.1, and letting N ↑ ∞ we deduce the claimed estimates. �

If all the Wj’s are equal, we obtain the following corollary, which contains in
particular the inequality (5.5.16) mentioned earlier.

Corollary 5.6.3. Let W be an element of S ′(Rn) whose Fourier transform is a func-
tion bounded in absolute value by some B> 0. Suppose that W is related as in (5.3.7)
to a locally integrable function K on Rn \{0} that satisfies

|K(x)| ≤ A |x|−n , x 6= 0,

lim
εk→0

∫
εk≤|x|≤1

K(x)dx = L ,

and
sup

y∈Rn\{0}

∫
|x|≥2|y|

|K(x− y)−K(x)|dx≤ A . (5.6.17)

Let T be the operator given by convolution with W. Then there exist constants
Cn,C′n > 0 such that for all 1 < p,r < ∞ we have that∥∥∥(∑

j
|T ( f j)|r

)1
r
∥∥∥

L1,∞
≤C′n max(r,(r−1)−1)(A+B)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

L1
,

∥∥∥(∑
j
|T ( f j)|r

)1
r
∥∥∥

Lp
≤Cnc(p,r)(A+B)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

where c(p,r)=max(p,(p−1)−1)max(r,(r−1)−1). In particular, these inequalities
are valid for the Hilbert transform and the Riesz transforms.

Interestingly enough, we can use the very statement of Theorem 5.6.1 to obtain
its corresponding vector-valued version.

Proposition 5.6.4. Let let 1 < p,r < ∞ and let B1 and B2 be two Banach spaces.
Suppose that ~T given by (5.6.4) is a bounded linear operator from Lr(Rn,B1) to
Lr(Rn,B2) with norm B = B(r). Also assume that for all x ∈ Rn \ {0}, ~K(x) is a
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bounded linear operator from B1 to B2 that satisfies conditions (5.6.1) , (5.6.2),
(5.6.3) for some A > 0 and ~K0 ∈ L(B1,B2). Then there exist positive constants
Cn,C′n such that for all B1-valued functions Fj we have∥∥∥(∑

j

∥∥~T (Fj)
∥∥r

B2

)1
r
∥∥∥

L1,∞(Rn)
≤C′n(A+B)

∥∥∥(∑
j

∥∥Fj
∥∥r

B1

)1
r
∥∥∥

L1(Rn)
,

∥∥∥(∑
j

∥∥~T (Fj)
∥∥r

B2

)1
r
∥∥∥

Lp(Rn)
≤Cn(A+B)c(p)

∥∥∥(∑
j

∥∥Fj
∥∥r

B1

)1
r
∥∥∥

Lp(Rn)
,

where c(p) = max(p,(p−1)−1).

Proof. Let us denote by `r(B1) the Banach space of all B1-valued sequences {u j} j
that satisfy ∥∥{u j} j

∥∥
`r(B1)

=
(
∑

j

∥∥u j
∥∥r

B1

)1
r < ∞.

Now consider the operator ~S defined on Lr(Rn, `r(B1)) by

~S({Fj} j) = {~T (Fj)} j .

It is obvious that ~S maps Lr(Rn, `r(B1)) to Lr(Rn, `r(B2)) with norm at most B.
Moreover, ~S has kernel K̃(x) ∈ L(`r(B1), `

r(B2)) given by

K̃(x)({u j} j) = {~K(x)(u j)} j,

where ~K is the kernel of ~T . It is not hard to verify that for x ∈ Rn \{0} we have∥∥K̃(x)
∥∥
`r(B1)→`r(B2)

=
∥∥~K(x)

∥∥
B1→B2

,

hence for x 6= y ∈ Rn we also have∥∥K̃(x− y)− K̃(x)
∥∥
`r(B1)→`r(B2)

=
∥∥~K(x− y)−~K(x)

∥∥
B1→B2

.

Moreover, if we define K̃0 ∈ L
(
`r(B1), `

r(B2)
)

by

K̃0({u j} j) =
{
~K0(u j)

}
j .

for {u j} j ∈ `r(B1), then we have

lim
k→∞

∫
εk≤|y|≤1

K̃(y)dy = K̃0

in L
(
`r(B1), `

r(B2)
)
.

We conclude that K̃ satisfies conditions (5.6.1) , (5.6.2), (5.6.3). Hence the oper-
ator ~S associate with K̃ satisfies the conclusion of Theorem 5.6.1, that is, the desired
inequalities for ~T . �
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5.6.3 Vector-Valued Estimates for Maximal Functions

Next, we discuss applications of vector-valued inequalities to some nonlinear opera-
tors. We fix an integrable function Φ on Rn and for t > 0 define Φt(x)= t−nΦ(t−1x).
We suppose that Φ satisfies the following regularity condition:

sup
y∈Rn\{0}

∫
|x|≥2|y|

sup
t>0
|Φt(x− y)−Φt(x)|dx = AΦ < ∞ . (5.6.18)

We consider the maximal operator

MΦ( f )(x) = sup
t>0
|( f ∗Φt)(x)|

defined for f in L1 +L∞. We are interested in obtaining Lp estimates for MΦ . We
observe that the trivial estimate∥∥MΦ( f )

∥∥
L∞ ≤ ‖Φ‖L1‖ f‖L∞ (5.6.19)

holds when p = ∞. It is natural to set

B1 = C and B2 = L∞(R+)

and view MΦ as the linear operator f 7→ { f ∗Φδ}δ>0 that maps B1-valued functions
to B2-valued functions.

To do this precisely, we fix and δ0 > 0. Then for each x∈Rn we define a bounded
linear operator ~KΦ(x) from B1 = C to B2 = L∞((δ0,∞)) by setting for c ∈ C

~KΦ(x)(c) = {c Φδ (x)}δ>δ0 .

Clearly we have ∥∥~KΦ(x)
∥∥

C→L∞((δ0,∞))
= sup

δ>δ0

|Φδ (x)| .

Now (5.6.18) implies condition (5.6.2) for the kernel ~KΦ . Also, if for some C,ε > 0,
|Φ(x)| ≤C (1+ |x|)−n−ε for all x, then (5.6.1) holds (for some A < ∞) since

sup
δ>0
|Φδ (x)| ≤ A |x|−n.

Also condition (5.6.3) holds since

lim
ε→0

∫
ε≤|y|≤1

Φδ (y)dy =
∫
|y|≤1

Φδ (y)dy uniformly in δ > δ0.

We also define a B2-valued linear operator acting on complex-valued functions
on Rn by

~MΦ( f ) = f ∗~KΦ = { f ∗Φδ}δ>δ0 .

Obviously ~MΦ maps L∞(Rn,B1) to L∞(Rn,B2) with norm at most ‖Φ‖L1 .
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Applying Theorem 5.6.1 with r = ∞ we obtain for 1 < p < ∞,∥∥~MΦ( f )
∥∥

Lp(Rn,B2)
≤Cn max(p,(p−1)−1)

(
AΦ +‖Φ‖L1

)∥∥ f
∥∥

Lp(Rn)
, (5.6.20)

which can be immediately improved to∥∥~MΦ( f )
∥∥

Lr(Rn,B2)
≤Cn max(1,(r−1)−1)

(
AΦ +‖Φ‖L1

)∥∥ f
∥∥

Lr(Rn)
(5.6.21)

via interpolation with estimate (5.6.19) for all 1 < r < ∞. At this point we let δ0 ↓ 0
via the Lebesgue monotone convergence theorem and we deduce the same estimate
with δ0 = 0.

Next we use estimate (5.6.21) to obtain vector-valued estimates for the sublinear
operator MΦ .

Corollary 5.6.5. Let Φ be an integrable function on Rn that satisfies (5.6.18). Then
there exist dimensional constants Cn and C′n such that for all 1 < p,r < ∞ the fol-
lowing vector-valued inequalities are valid:∥∥∥(∑

j
|MΦ( f j)|r

)1
r
∥∥∥

L1,∞
≤C′nc(r)

(
AΦ+‖Φ‖L1

)∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

L1
, (5.6.22)

where c(r) = 1+(r−1)−1, and∥∥∥(∑
j
|MΦ( f j)|r

)1
r
∥∥∥

Lp
≤Cnc(p,r)

(
AΦ+‖Φ‖L1

)∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
, (5.6.23)

where c(p,r) =
(
1+(r−1)−1

)(
p+(p−1)−1

)
.

Proof. We set B1 = C and B2 = L∞((δ0,∞)) as before. We use estimate (5.6.21)
as a starting point in Proposition 5.6.4, which immediately yields the required con-
clusions (5.6.22) and (5.6.23). Finally, we let δ0 ↓ 0. �

Similar estimates hold for the Hardy–Littlewood maximal operator.

Theorem 5.6.6. For 1 < p,r < ∞ the Hardy–Littlewood maximal function M satis-
fies the vector-valued inequalities∥∥∥(∑

j
|M( f j)|r

)1
r
∥∥∥

L1,∞
≤C′n

(
1+(r−1)−1)∥∥∥(∑

j
| f j|r

)1
r
∥∥∥

L1
, (5.6.24)

∥∥∥(∑
j
|M( f j)|r

)1
r
∥∥∥

Lp
≤Cn c(p,r)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
, (5.6.25)

where c(p,r) =
(
1+(r−1)−1

)(
p+(p−1)−1

)
.

Proof. Let us fix a positive radial symmetrically decreasing Schwartz function Φ on
Rn that satisfies Φ(x)≥ 1 when |x| ≤ 1. Then the Hardy–Littlewood maximal func-
tion M( f ) is pointwise controlled by a constant multiple of the function MΦ(| f |).
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In view of Corollary 5.6.5, it suffices to check that for such a Φ , (5.6.18) holds. First
observe that in view of the decreasing character of Φ , we have

sup
j
| f | ∗Φ2 j ≤MΦ(| f |)≤ 2n sup

j
| f | ∗Φ2 j ,

and for this reason we choose to work with the easier dyadic maximal operator

Md
Φ( f ) = sup

j
| f ∗Φ2 j | .

We observe the validity of the simple inequalties

2−n M( f )≤M( f )≤ 1
vn

MΦ(| f |)≤ 2n

vn
Md

Φ(| f |) . (5.6.26)

If we can show that

sup
y∈Rn\{0}

∫
|x|≥2|y|

sup
j∈Z
|Φ2 j(x− y)−Φ2 j(x)|dx =Cn < ∞ , (5.6.27)

then (5.6.22) and (5.6.23) are satisfied with Md
Φ

replacing MΦ . We therefore turn
our attention to (5.6.27). We have∫
|x|≥2|y|

sup
j∈Z
|Φ2 j(x− y)−Φ2 j(x)|dx

≤ ∑
j∈Z

∫
|x|≥2|y|

|Φ2 j(x− y)−Φ2 j(x)|dx

≤ ∑
2 j>|y|

∫
|x|≥2|y|

|y| |∇Φ
( x−θy

2 j

)
|

2(n+1) j
dx+ ∑

2 j≤|y|

∫
|x|≥2|y|

(|Φ2 j(x− y)|+ |Φ2 j(x)|)dx

≤ ∑
2 j>|y|

∫
|x|≥2|y|

|y|
2(n+1) j

CN dx
(1+ |2− j(x−θy)|)N +2 ∑

2 j≤|y|

∫
|x|≥|y|

|Φ2 j(x)|dx

≤ ∑
2 j>|y|

∫
|x|≥2|y|

|y|
2(n+1) j

CN

(1+ |2− j−1x|)N dx+2 ∑
2 j≤|y|

∫
|x|≥2− j |y|

|Φ(x)|dx

≤ ∑
2 j>|y|

∫
|x|≥2− j |y|

|y|
2 j

CN

(1+ |x|)N dx+2 ∑
2 j≤|y|

CN(2− j|y|)−N

≤CN ∑
2 j>|y|

|y|
2 j +CN

≤ 3CN ,

where CN > 0 depends on N > n, θ ∈ [0,1], and |x−θy| ≥ |x|/2 when |x| ≥ 2|y|.
Now apply (5.6.22) and (5.6.23) to Md

Φ
and use (5.6.26) to obtain the desired

vector-valued inequalities. �
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Remark 5.6.7. Observe that (5.6.24) and (5.6.25) also hold for r = ∞. These end-
point estimates can be proved directly by observing that

sup
j

M( f j)≤M(sup
j
| f j|) .

The same is true for estimates (5.6.22) and (5.6.23). Finally, estimates (5.6.25) and
(5.6.23) also hold for p = r = ∞.

Exercises

5.6.1. (a) For all j ∈ Z, let I j be an interval in R and let Tj be the operator given
on the Fourier transform by multiplication by the characteristic function of I j. Prove
that there exists a constant C > 0 such that for all 1 < p,r < ∞ and for all square
integrable functions f j on R we have∥∥∥(∑

j
|Tj( f j)|r

)1
r
∥∥∥

Lp(R)
≤C max

(
r,

1
r−1

)
max

(
p,

1
p−1

)∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp(R)
,

∥∥∥(∑
j
|Tj( f j)|r

)1
r
∥∥∥

L1,∞(R)
≤C max

(
r,

1
r−1

)∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

L1(R)
.

(b) Let R j be arbitrary rectangles on Rn with sides parallel to the axes and let S j be
the operators given on the Fourier transform by multiplication by the characteristic
functions of R j. Prove that there exists a dimensional constant Cn < ∞ such that for
all indices 1 < p,r < ∞ and for all square integrable functions f j in Lp(Rn) we have∥∥∥(∑

j
|S j( f j)|r

)1
r
∥∥∥

Lp(Rn)
≤Cn max

(
r,

1
r−1

)n
max

(
p,

1
p−1

)n∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp(Rn)
.

[
Hint: Part (a): Use Theorem 5.5.1 and the identity Tj =

i
2

(
MaHM−a−MbHM−b

)
,

if I j is χ(a,b), where Ma( f )(x) = f (x)e2πiax and H is the Hilbert transform. Part (b):
Apply the result in part (a) in each variable.

]
5.6.2. Let (T,dµ) be a σ -finite measure space. For every t ∈ T , let R(t) be a rect-
angle in Rn with sides parallel to the axes such that the map t 7→ R(t) is measurable.
Then there is a constant Cn > 0 such that for all 1 < p < ∞ and for all families of
square integrable functions { ft}t∈T on Rn such that t 7→ ft(x) is measurable for all
x ∈ Rn we have∥∥∥∥(∫T

|( f̂t χR(t))
∨|2 dµ(t)

)1
2
∥∥∥∥

Lp
≤Cn max(p,(p−1)−1)n

∥∥∥∥(∫T
| ft |2 dµ(t)

)1
2
∥∥∥∥

Lp
,
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Hint: When n = 1 reduce matters to an Lp(L2(T,dµ),L2(T,dµ)) inequality for the

Hilbert transform, via the hint in the preceding exercise. Verify the inequality p = 2
and then use Theorem 5.6.1 for the other p’s. Obtain the n-dimensional inequality
by iterating the one-dimensional.

]
5.6.3. Let Φ be a function on Rn that satisfies supx∈Rn |x|n|Φ(x)| ≤ A and∫

Rn
|Φ(x− y)−Φ(x)|dx≤ η(|y|),

∫
|x|≥R
|Φ(x)|dx≤ η(R−1) ,

for all R ≥ 1, where η is a continuous increasing function on [0,2] that satisfies
η(0) = 0 and

∫ 2
0

η(t)
t dt < ∞ .

(a) Prove that (5.6.27) holds.
(b) Show that if Φ lies in L1(Rn), then the maximal function f 7→ sup j∈Z | f ∗Φ2 j |
maps Lp(Rn) to itself for 1 < p≤ ∞.[
Hint: Part (a): Modify the calculation in the proof of Theorem 5.6.6. Part (b): Use

Theorem 5.6.1 with r = ∞.
]

5.6.4. (a) On R, take f j = χ[2 j−1,2 j ] to prove that inequality (5.6.25) fails when
p = ∞ and 1 < r < ∞.
(b) Again on R, take N > 2 and f j = χ

[ j−1
N , j

N ]
for j = 1,2, . . . ,N to prove that (5.6.25)

fails when 1 < p < ∞ and r = 1.

5.6.5. Let K be an integrable function on the real line and assume that the operator
f 7→ f ∗K is bounded on Lp(R) for some 1 < p < ∞. Prove that the vector-valued
inequality ∥∥∥(∑

j
|K ∗ f j|q

)1
q
∥∥∥

Lp
≤Cp,q

∥∥∥(∑
j
| f j|q

)1
q
∥∥∥

Lp

may fail in general when q < 1.[
Hint: Take K = χ[−1,1] and f j = χ

[ j−1
N , j

N ]
for 1≤ j ≤ N.

]
5.6.6. Let {Q j} j be a countable collection of cubes in Rn with disjoint interiors.
Let c j be the center of the cube Q j and d j its diameter. For ε > 0, define the
Marcinkiewicz function associated with the family {Q j} j as follows:

Mε(x) = ∑
j

dn+ε

j

|x− c j|n+ε +dn+ε

j
.

Prove that for some constants Cn,ε,p and Cn,ε one has∥∥Mε

∥∥
Lp ≤Cn,ε,p

(
∑

j
|Q j|

) 1
p
, p >

n
n+ ε

,

∥∥Mε

∥∥
L

n
n+ε

,∞ ≤Cn,ε

(
∑

j
|Q j|

) n+ε
n
,

and consequently
∫

Rn Mε(x)dx≤Cn,ε ∑ j |Q j|.


