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is %,-integrable and the expression

/\y\<1(fl(x ¥) = F)) 1K () (ui)|| 2, dy

is a well-defined element of %,. Also the integral in (5.6.5) is over the compact set
1 < |y| < |x| + M, where the ball B(0, M) contains the supports of all f;, and thus it
also converges in %, using (5.6.1).

The following vector-valued extension of Theorem 5.3.3 is the main result of this
section.

Theorem 5.6.1. Let B, and P, be Banach spaces. Suppose that K (x) satisfies
(5.6.1), (5.6.2), and (5.6. 3) for some A > 0 and Ky € L(%l,ﬂz) Let T be the
operator associated with K as in (5.6.4). Assume that T is a bounded linear op-
erator from L' (R", %)) to L' (R", %,) with norm B, for some 1 < r < oo, Then T
has well-defined extensions on LP (R", %)) for all 1 < p < oo. Moreover; there exist
dimensional constants C, and C), such that

1T ) |1 ) < CulA+BONF |3 o, (5.6.6)
forall F in L"(R", %) and
17| o ) < Comax (p, (p = 1)) A+ BI|F || pigo gy (567

whenever 1 < p < o and F is in LP(R", %).

Proof. Although T is defined on the entire L' (R”, %) NL"(R", 2, ), it will be con-
venient to work with its restriction to a smaller dense subspace of L!(R", %;). We
make the observation that the space 2 ® % of all functions of the form }.}” | x&,u;,
where R; are disjoint dyadic cubes and u; € 4, is dense in L (R", ). Indeed, by
Proposition 5.5.6 (c) it suffices to approximate a 6;° ® %;-valued function with a
2 ® %8,-valued function. But this is immediate since any function in €;°(R") can
be approximated in L! (R") by finite linear combinations of characteristic functions
of disjoint dyadic cubes.

Case 1: r = co. We fix F =Y, xgu; in £ ® %) and we notice that for each
x € R" we have ||F(x)|| s, = Li"| X&, (x)||ui]| ,, which is also a finite linear combi-
nation of characteristic functions of dyadic cubes. Apply the Calderén-Zygmund
decomposition to ||F||z, at height ya, where y = 27""!B! as in the proof of
Theorem 5.3.3. We extract a finite collection of closed dyadic cubes {Q,}; satis-
fying ¥';10;] < (yo)™'||F| 11 (R",2,) and we define the good function of the decom-
position

Gx) = F(x)_l , for x ¢ U;0;
|0l jQ/F(x)dx forx € Q;.
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Also define the bad function B(x) = F (x) — G(x). Then B(x) = ¥; Bj(x), where each
Bj is supported in Q; and has mean value zero over Q;. Moreover,

G|t re ) < [IF |z (Re ) (5.6.8)
|Gl =(rn,2,) < 2"yt (5.6.9)

and [|Bjl| 1 (ge ) < 2" lya|Q;], by an argument similar to that given in the proof
of Theorem 5.3.1. We only verify (5.6.9). On the cube Q;, G is equal to the constant
10;]7! fQiF(x) dx, and this is bounded by 2"ya. For each x € R"\ J;Q; and for

each k=0,1,2,... there exists a unique nonselected dyadic cube Q)(Ck) of generation
k that contains x. Then for each k > 0, we have

1
o

The intersection of the closures of the cubes Q,(Ck) is the singleton {x}. Using Corol-
lary 2.1.16, we deduce that for almost all x € R"\ Uj Q; we have

= L o= Z,}ﬁw(@ o “XR‘(y)d) paear |/ F»dy

Since these averages are at most Yo, we conclude that ||F|| 5, < yor almost every-
where on R\ .Uj Q;, hence |G|, < ya a.e. on this set. This proves (5.6.9).
By assumption we have

1
= 10 /Q<k> I1F ()|l dy < yo.
X X

B

IT(G) 1= (re ) < BullGlli=(ro.,) < 2"y0UB. = /2.

Then the set {x € R": ||T(G)(x)|| %, > a/2} is null and we have

HxeR": |T(F)(x)|lz > a}| < [{xeR": | T(B)(x)]5, > a/2}|.
Let 05 = 2y/nQ;. We have
[{x €R": |T(B)(x)l|, > t/2}|

<|UJoi|+ {x ¢ UQ;: IT(B)(x)ll, > &/2}]
J J
v IFlly w2 | 2 ,

< +5/W I7(B) (), dx

<A een) 2y [, @0l

since B =1} ; B;. It suffices to estimate the last sum. Denoting by y; is the center of
the cube Q; and using the fact that B; has mean value zero over Q;, we write
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L/, T
_ Z/ i
< Z/Q B H%/Q)
¥ f, 1o, ] Jy,.|>2y}.j.”’?<x‘y>— Re-wl,

<AZ\|B 21(0;,2)

< 2n+1A||F||L] (R",%,)>

% dx

dx
B

I_('(x—y)—I_(’(x—yj)H%%%dxdy

K(x—y)—K(x—y;))(B;(»))dy

B, dxdy

where we used the fact that [x —y;[ > 2|y —y;| forall x ¢ Q7 and y € Q; and (5.6.2).
Consequently,

) IF |l e 2,y 2
Y

{xeR": |T(F)(x)||s > a}| < ot AN e )

F " g
— ((2\/;l)n2n+28*+2n+1A) || ”L]((XR %)

F 1 n g
< C(A+B) | ”L(;R )

where C' = (24/n)"2"t! 4+2"+2_ Thus T has an extension that maps L' (R", %)) to
L' (R", %,) with constant C! (A + B,). By interpolation (Exercise 5.5.3 (b)) it has
an extension that satisfies (5.6.7).

Case 2: 1 <r <oo. Wefix F =Y, xgpu; in 2® % and we notice that for each
x € R" we have ||F(x)|| %, = X Xr;(x)||ui|| , . Thus the function x — [|F (x)|| 5, is
a finite linear combination of characteristic functions of disjoint dyadic cubes. We
prove the weak type estimate (5.6.6) by applying the Calderén—Zygmund decompo-
sition to the function x +— ||F(x)|| 5, defined on R". Then we decompose F = G+ B,
where G and B satisfy properties analogous to the case » = co. The new ingredient in
this case is that the set {x € R": 17(G) (x)|| 2, > a/2} is not null but its measure
can be estimated as follows:

. 13 2B\ i 2B,
{xeR": |T(G)(x)||z, > a/2}| < o ) N6lo®ez) < = IFllL e ) 5

where the first inequality is a consequence of the boundedness of T on L' (R", %)
and the second is obtained by combining (5.6.8) and (5.6.9). Combining this es-
timate for the good function with the one for the bad function obtained in the
preceding case, it follows that T has an extension that satisfies (5.6.6), ie., it
maps T : L'(R", %) to L"=(R",%,) with constant C', (A + B,), where C, =
2+(2\/ﬁ)n2n+l+2n+l‘



