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Taking the supremum over all finitely simple functions g on Y with Lq′ norm less
than or equal to one, we conclude the proof when p,q < ∞. When q′ < p = ∞ set
fz = f for all z, suitably modifying the argument; when p < q′ = ∞ set gz = g. �

We now give an application of Theorem 1.3.4.

Example 1.3.6. One may prove Young’s inequality (Theorem 1.2.12) using the
Riesz–Thorin interpolation theorem (Theorem 1.3.4). Fix a function g in Lr and
let T ( f ) = f ∗g. Since T : L1→ Lr with norm at most ‖g‖Lr and T : Lr′ → L∞ with
norm at most ‖g‖Lr , Theorem 1.3.4 gives that T maps Lp to Lq with norm at most
the quantity ‖g‖θ

Lr‖g‖1−θ

Lr = ‖g‖Lr , where

1
p
=

1−θ

1
+

θ

r′
and

1
q
=

1−θ

r
+

θ

∞
. (1.3.19)

Finally, observe that equations (1.3.19) give (1.2.13).

1.3.3 Interpolation of Analytic Families of Operators

Theorem 1.3.4 can be extended to the case in which the interpolated operators are
allowed to vary. In particular, if a family of operators depends analytically on a
parameter z, then the proof of this theorem can be adapted to work in this setting.

We describe the setup for this theorem. Let (X ,µ) and (Y,ν) be σ -finite measure
spaces. Suppose that for every z in the closed strip S = {z ∈C : 0≤ Rez≤ 1} there
is an associated linear operator Tz defined on the space of finitely simple functions
on X and taking values in the space of measurable functions on Y such that∫

Y
|Tz(χA)χB|dν < ∞ (1.3.20)

whenever A and B are subsets of finite measure of X and Y , respectively. The family
{Tz}z is said to be analytic if for all f ,g finitely simple functions we have that the
function

z 7→
∫

Y
Tz( f )gdν (1.3.21)

is analytic in the open strip S = {z∈C : 0<Rez< 1} and continuous on its closure.
The analytic family {Tz}z is called of admissible growth if there is a constant τ0 with
0≤ τ0 < π such that for finitely simple functions f on X and g on Y there is constant
C( f ,g) such that

log
∣∣∣∣∫Y

Tz( f )gdν

∣∣∣∣≤C( f ,g)eτ0|Imz| (1.3.22)

for all z satisfying 0 ≤ Rez ≤ 1. Note that if there is τ0 ∈ (0,π) such that for all
measurable subsets A of X and B of Y of finite measure there is a constant c(A,B)
such that

log
∣∣∣∣∫B

Tz(χA)dν

∣∣∣∣≤ c(A,B)eτ0|Imz| , (1.3.23)



1.3 Interpolation 41

then (1.3.22) holds for f = ∑
M
k=1 akχAk and g = ∑

N
j=1 b jχB j and

C( f ,g) = log(MN)+
M

∑
k=1

N

∑
j=1

[
c(Ak,B j)+ log

(
|ak b j|+1

)]
.

The extension of the Riesz–Thorin interpolation theorem is as follows.

Theorem 1.3.7. Let Tz be an analytic family of linear operators of admissible
growth defined on the space of finitely simple functions of a σ -finite measure space
(X ,µ) and taking values in the set of measurable functions of another σ -finite mea-
sure space (Y,ν). Let 1 ≤ p0 6= p1 ≤ ∞, 1 ≤ q0 6= q1 ≤ ∞, and let M0 and M1 be
positive functions on the real line such that for some τ1 with 0≤ τ1 < π we have

sup
−∞<y<+∞

e−τ1|y| logM j(y)< ∞ (1.3.24)

for j = 0,1. Fix 0 < θ < 1 and define p,q by the equations

1
p
=

1−θ

p0
+

θ

p1
and

1
q
=

1−θ

q0
+

θ

q1
. (1.3.25)

Suppose that for all finitely simple functions f on X we have∥∥Tiy( f )
∥∥

Lq0 ≤M0(y)
∥∥ f
∥∥

Lp0 , (1.3.26)∥∥T1+iy( f )
∥∥

Lq1 ≤M1(y)
∥∥ f
∥∥

Lp1 . (1.3.27)

Then for all finitely simple functions f on X we have∥∥Tθ ( f )
∥∥

Lq ≤M(θ)
∥∥ f
∥∥

Lp (1.3.28)

where for 0 < x < 1

M(x) = exp
{

sin(πx)
2

∫
∞

−∞

[
logM0(t)

cosh(πt)−cos(πx)
+

logM1(t)
cosh(πt)+cos(πx)

]
dt
}
.

Thus, by density, Tθ has a unique bounded extension from Lp(X ,µ) to Lq(Y,ν) when
p and q are as in (1.3.25).

Note that in view of (1.3.24), the integral defining M(t) converges absolutely.
The proof of the previous theorem is based on an extension of Lemma 1.3.5.

Lemma 1.3.8. Let F be analytic on the open strip S = {z ∈ C : 0 < Re z < 1} and
continuous on its closure such that for some A < ∞ and 0≤ τ0 < π we have

log |F(z)| ≤ Aeτ0|Im z| (1.3.29)
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for all z ∈ S. Then

|F(x+ iy)| ≤ exp
{

sin(πx)
2

∫
∞

−∞

[
log |F(it + iy)|

cosh(πt)− cos(πx)
+

log |F(1+ it + iy)|
cosh(πt)+ cos(πx)

]
dt
}

whenever 0 < x < 1, and y is real.

Assuming Lemma 1.3.8, we prove Theorem 1.3.7.

Proof. Fix 0 < θ < 1 and finitely simple functions f on X and g on Y such that
‖ f‖Lp = ‖g‖Lq′ = 1. Note that since 0 < θ < 1 we must have 1 < p,q < ∞. Let

f =
m

∑
k=1

akeiαk χAk and g =
n

∑
j=1

b jeiβ j χB j ,

where ak > 0, b j > 0, αk, β j are real, Ak are pairwise disjoint subsets of X with finite
measure, and B j are pairwise disjoint subsets of Y with finite measure for all k, j.
Let P(z), Q(z) be as in (1.3.15) and fz, gz as in (1.3.16). Define for z ∈ S

F(z) =
∫

Y
Tz( fz)gz dν . (1.3.30)

Linearity gives that

F(z) =
m

∑
k=1

n

∑
j=1

aP(z)
k bQ(z)

j eiαk eiβ j

∫
Y

Tz(χAk)(x)χB j(x)dν(x) ,

and conditions (1.3.20) together with the fact that {Tz}z is an analytic family imply
that F(z) is a well-defined analytic function on the unit strip that extends continu-
ously to its boundary.

Since {Tz}z is a family of admissible growth, (1.3.23) holds for some c(Ak,B j)
and τ0 ∈ (0,π) and this combined with the facts that

|aP(z)
k | ≤ (1+ak)

p
p0

+ p
p1 and |bQ(z)

j | ≤ (1+b j)
q′
q′0

+ q′
q′1

for all z with 0 < Re z < 1, implies (1.3.29) with τ0 as in (1.3.23) and

A= log(mn)+
m

∑
k=1

n

∑
j=1

[
c(Ak,B j)+

( p
p0

+
p
p1

)
log(1+ak)+

( q′

q′0
+

q′

q′1

)
log(1+b j)

]
.

Thus F satisfies the hypotheses of Lemma 1.3.8. Moreover, the calculations in the
proof of Theorem 1.3.4 show that (even when p0 = ∞, q0 = 1, p1 = ∞, q1 = 1)

∥∥ fiy
∥∥

Lp0 =
∥∥ f
∥∥ p

p0
Lp = 1 =

∥∥g
∥∥ q′

q′0
Lq′ =

∥∥giy
∥∥

Lq′0
when y ∈ R , (1.3.31)

∥∥ f1+iy
∥∥

Lp1 =
∥∥ f
∥∥ p

p1
Lp = 1 =

∥∥g
∥∥ q′

q′1
Lq′ =

∥∥g1+iy
∥∥

Lq′1
when y ∈ R . (1.3.32)


