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(b) Assume that F lies in a dense subspace of B1, it satisfies ‖‖F‖B1‖Lp = 1, and
it takes only finitely many values. For a λ > 1 pick a large integer N such that
λ−N < ‖F(x)‖B1 ≤ λ N for all x ∈ X such that ‖F(x)‖B1 6= 0 and define Fj = FχΩ j ,
where Ω j = {x : λ j < ‖F‖B1 ≤ λ j+1}. Let a = p

p1
− p

p0
. Prove the inequalities∥∥∥∑

j
λ
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(c) Define g0(y) = max j λ− jaθ‖~T (Fj)(y)‖B2 , g1(y) = max j λ ja(1−θ)‖~T (Fj)(y)‖B2
for y ∈ Y and show that

‖g0‖Lq0 (Y ) ≤ A0 λ
aθ and ‖g1‖Lq1 (Y ) ≤ A1 .

(d) Prove that for all y ∈ Y we have
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(
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λ a(1−θ)−1

)

and conclude that ‖~T (F)‖Lp(Y,B2) ≤ cθ A1−θ
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1 by picking λ = (1+

√
2)1/a.[

Hint: Part (d): Split the sum according to whether λ ja > g1(y)
g0(y)

and λ ja ≤ g1(y)
g0(y)

.
]

5.5.2. Prove the following version of the Riesz–Thorin interpolation theorem. Let
(X ,µ) and (Y,ν) be σ -finite measure spaces. Let 1 < p0,q0, , p1,q1,r0,s0,r1,s1 < ∞

and 0 < θ < 1 satisfy
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Suppose that T is a linear operator that maps Lp0(X) to Lq0(Y ) and Lp1(X) to
Lq1(Y ). Define a vector-valued operator ~T by setting ~T ({ f j} j) = {T ( f j)} j act-
ing on sequences of complex-valued functions defined on X . Suppose that ~T maps
Lp0(X , `r0(C)) to Lq0(Y, `s0(C)) with norm M0 and Lp1(X , `r1(C)) to Lq1(Y, `s1(C))
with norm M1. Prove that ~T maps Lp(X , `r(C)) to Lq(Y, `s(C)) with norm at most
M1−θ

0 Mθ
1 .[

Hint: Use the idea of the proof of Theorem 1.3.4. Apply Lemma 1.3.5 to the
function
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