5.5 Vector-Valued Inequalities

The space $L^p(X) \otimes \ell^r$ is the set of all finite sums

$$\sum_{j=1}^{m} (a_{j1}, a_{j2}, a_{j3}, \dots) g_j$$

where $g_j \in L^p(X)$ and $(a_{j1}, a_{j2}, a_{j3}, ...) \in \ell^r$, j = 1, ..., m. This is certainly a subspace of $L^p(X, \ell^r)$. Now given $(f_1, f_2, ...) \in L^p(X, \ell^r)$, let $F_m = e_1 f_1 + \cdots + e_m f_m$, where e_j is the infinite sequence with zeros everywhere except at the *j*th entry, where it has 1. Then $F_m \in L^p(X) \otimes \ell^r$ and approximates *f* in the norm of $L^p(X, \ell^r)$. This shows the density of $L^p(X) \otimes \ell^r$ in $L^p(X, \ell^r)$.

If T is a linear operator bounded from $L^p(X)$ to $L^q(Y)$, then \vec{T} is defined by

$$\vec{T}(\{f_j\}_j) = \{T(f_j)\}_j.$$

According to Definition 5.5.8, T has a bounded ℓ^r -extension if and only if the inequality

$$\left\|\left(\sum_{j}|T(f_{j})|^{r}\right)^{\frac{1}{r}}\right\|_{L^{q}} \leq C \left\|\left(\sum_{j}|f_{j}|^{r}\right)^{\frac{1}{r}}\right\|_{L^{p}}$$

is valid.

A linear operator T acting on measurable functions is called *positive* if it satisfies $f \ge 0 \implies T(f) \ge 0$. It is straightforward to verify that positive operators satisfy

$$f \leq g \implies T(f) \leq T(g),$$

$$|T(f)| \leq T(|f|),$$

$$\sup_{j} |T(f_{j})| \leq T\left(\sup_{j} |f_{j}|\right),$$

(5.5.26)

for all f, g, f_j measurable functions. We have the following result regarding vectorvalued extensions of positive operators:

Proposition 5.5.10. Let $0 < p,q \le \infty$ and (X,μ) , (Y,ν) be two σ -finite measure spaces. Let T be a positive linear operator mapping $L^p(X)$ to $L^q(Y)$ (respectively, to $L^{q,\infty}(Y)$) with norm A. Let \mathscr{B} be a Banach space. Then T has a \mathscr{B} -valued extension \vec{T} that maps $L^p(X, \mathscr{B})$ to $L^q(Y, \mathscr{B})$ (respectively, to $L^{q,\infty}(Y, \mathscr{B})$) with the same norm.

Proof. Let us first understand this theorem when $\mathscr{B} = \ell^r$ for $1 \le r \le \infty$. The two endpoint cases r = 1 and $r = \infty$ can be checked easily using the properties in (5.5.26). For instance, for r = 1 we have

$$\left\|\sum_{j} |T(f_j)|\right\|_{L^q} \le \left\|\sum_{j} T(|f_j|)\right\|_{L^q} = \left\|T\left(\sum_{j} |f_j|\right)\right\|_{L^q} \le A \left\|\sum_{j} |f_j|\right\|_{L^p},$$

while for $r = \infty$ we have

$$\left\|\sup_{j}|T(f_{j})|\right\|_{L^{q}} \leq \left\|T(\sup_{j}|f_{j}|)\right\|_{L^{q}} \leq A \left\|\sup_{j}|f_{j}|\right\|_{L^{p}}.$$