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Observe that for every F → L1(X)↑B we have
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Thus the linear operator
F ↘≃ IF =

∫

X
F(x)dµ(x)

is bounded from L1(X)↑B into B. Since every element of L1(X ,B) is a (norm)
limit (Proposition 5.5.6 (a)) of a sequence of elements in L1(X)↑B, by continuity,
the operator F ↘≃ IF has a unique extension on L1(X ,B) that we call the Bochner
integral of F and denote by ∫

X
F(x)dµ(x) .

L1(X ,B) is called the space of all Bochner integrable functions from X to B. Since
the Bochner integral is an extension of IF , for each F → L1(X ,B) we have
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Consequently, measurable functions F with
∫

X ↓F(x)↓B dx < ∀ are Bochner inte-
grable over X . It is not difficult to show that the Bochner integral of F is the only
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for all u↔ → B
↔. The next result concerns duality in this context when X = Rn.

Proposition 5.5.7. Let B be a Banach space and 1 ↗ p ↗ ∀.
(a) For any F → Lp(Rn,B) we have
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Consequently, Lp(Rn,B) isometrically embeds in (Lp⇐(Rn,B↔))↔.
(b) for any G → Lp⇐(Rn,B↔) one has
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and thus Lp⇐(Rn,B↔) isometrically embeds in (Lp(Rn,B))↔.


