defines a distribution in $\mathcal{S}'(\mathbf{R}^n)$ if and only if the following limit exists:

$$\lim_{j\to\infty}\int_{\delta_j\leq |x|\leq 1}K(x)\,dx.$$

- **5.3.3.** Suppose that a function K on $\mathbb{R}^n \setminus \{0\}$ satisfies condition (5.3.4) with constant A_1 and condition (5.3.12) with constant A_2 .
- (a) Show that the functions $K(x)\chi_{|x|\geq \varepsilon}$ also satisfy condition (5.3.12) uniformly in $\varepsilon > 0$ with constant $A_1 + A_2$.
- (b) Obtain the same conclusion for the upper truncations $K(x)\chi_{|x| < N}$.
- (c) Deduce a similar conclusion for the double truncations $K^{(\varepsilon,N)}(x) = K(x)\chi_{\varepsilon \le |x| \le N}$.
- **5.3.4.** Modify the proof of Theorem 5.3.5 to prove that if $T^{(**)}$ maps L^r to $L^{r,\infty}$ for some $1 < r < \infty$, and K satisfies condition (5.3.12), then $T^{(**)}$ maps L^1 to $L^{1,\infty}$.
- **5.3.5.** Assume that T is a linear operator acting on measurable functions on \mathbb{R}^n such that whenever a function f is supported in a cube Q, then T(f) is supported in a fixed multiple of Q.
- (a) Suppose that T maps L^p to itself for some 1 with norm <math>B. Prove that T extends to a bounded operator from L^1 to $L^{1,\infty}$ with norm a constant multiple of B.
- (b) Suppose that T maps L^p to L^q for some $1 < q < p < \infty$ with norm B. Prove that T extends to a bounded operator from L^1 to $L^{s,\infty}$ with norm a multiple of B, where

$$\frac{1}{p'} + \frac{1}{q} = \frac{1}{s}.$$

- **5.3.6.** (a) Let $1 < q < \infty$. Show that the good function g in Theorem 5.3.1 lies in the Lorentz space $L^{q,1}$ and that $\|g\|_{L^{q,1}} \le C_{n,q} \alpha^{1/q'} \|f\|_{L^1}^{1/q}$ for some constant $C_{n,q}$. (b) Let $1 < r < \infty$. Obtain a generalization of Theorem 5.3.3 in which the assumption
- (b) Let $1 < r < \infty$. Obtain a generalization of Theorem 5.3.3 in which the assumption that T maps L^r to L^r is replaced by that T maps $L^{r,1}$ to $L^{r,\infty}$ with norm B.
- (c) Let $1 < r < \infty$. Obtain a further generalization of Theorem 5.3.3 in which the assumption that T maps L^r to L^r is replaced by that it is of restricted weak type (r,r), i.e., it satisfies

$$|\{x: |T(\chi_E)(x)| > \alpha\}| \leq B^r \frac{|E|}{\alpha^r}$$

for all subsets E of \mathbf{R}^n with finite measure.

5.3.7. Let K satisfy (5.3.12) for some $A_2 > 0$, let $W \in \mathcal{S}'(\mathbf{R}^n)$ be an extension of K on \mathbf{R}^n as in (5.3.7), and let T be the operator given by convolution with W. Obtain the case $r = \infty$ in Theorem 5.3.3. Precisely, prove that if T maps $L^{\infty}(\mathbf{R}^n)$ to itself with constant B, then T has an extension on L^1 that satisfies

$$||T||_{L^1\to L^{1,\infty}}\leq C'_n(A_2+B),$$