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operators (often via a linearization process) but it does not apply to quasi-linear
operators without some loss in the constant.

Recall that a simple function is called finitely simple if it is supported in a set
of finite measure. Finitely simple functions are dense in L” (X, ) for 0 < p < oo,
whenever (X, 1) is a o-finite measure space.

Theorem 1.3.4. Ler (X, 1) and (Y,v) be two o-finite measure spaces. Let T be
a linear operator defined on the set of all finitely simple functions on X and taking
values in the set of measurable functionsonY. Let 1 < pg, p1,q0,q1 < o and assume
that
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for all finitely simple functions f on X. Then for all 0 < 6 < 1 we have
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for all finitely simple functions f on X, where
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Consequently, when p < oo, by density, T has a unique bounded extension from
LP(X,u) to L1(Y,Vv) when p and q are as in (1.3.14).

Proof. 1If p = ¢’ = oo there is nothing to prove. Assume first p,q’ < oo. Let
m .
f = Z ake’a"xAk
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be a finitely simple function on X, where a; > 0, oy are real, and Ay are pairwise
disjoint subsets of X with finite measure.
We need to control

/Y T(f)(¥)e) dv(y)|,
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where the supremum is taken over all finitely simple functions g on Y with L7 norm
less than or equal to 1. Write
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where b; > 0, B; are real, and B; are pairwise disjoint subsets of ¥ with finite v-
measure. Let

:E(l—z)—kﬁz and Q(Z):q—(l—z)+q—,z. (1.3.15)
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For z in the closed strip S = {z € C: 0 < Rez < 1}, define
n
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and
FE@) = [ TU0) 8:0)dv(y).

Notice that fy = f and gg = g. By linearity we have

F(2)=Y Y a8 e eiPi /Y T (xa,) () x8;(¥)dV(y).
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Since ag,b; > 0, F' is analytic in z, and the expression
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is a finite constant, being an absolutely convergent integral; this is seen by Holder’s

inequality with exponents go and g, (or ¢; and ¢}) and (1.3.12).
By the disjointness of the sets A; we have (even when pg = o)
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since |a,f<”) | = a°, and by the disjointness of the B;’s we have (even when go = 1)
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since |bJQ(”)| = b;’o . Thus Hélder’s inequality and the hypothesis give
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By similar calculations, which are valid even when p; = e and g; = 1, we have
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