5.3 Calderón-Zygmund Decomposition and Singular Integrals

for all $f \in \mathscr{S}(\mathbf{R}^n)$, where M is the Hardy–Littlewood maximal operator. Moreover, $T^{(*)}$ is bounded on $L^p(\mathbf{R}^n)$ when 1 .

Proof. Let φ be a radially decreasing smooth function with integral 1 supported in the ball B(0, 1/2). For a function g and $\varepsilon > 0$ we use the notation $g_{\varepsilon}(x) = \varepsilon^{-n}g(\varepsilon^{-1}x)$. For a distribution W we define W_{ε} analogously, i.e. as the unique distribution with the property $\langle W_{\varepsilon}, \psi \rangle = \varepsilon^{-n} \langle W, \psi_{\varepsilon^{-1}} \rangle$. We begin by observing that $K_{\varepsilon^{-1}}(x) = \varepsilon^n K(\varepsilon x)$ satisfies (5.3.19), (5.3.20), and (5.3.21) uniformly in $\varepsilon > 0$.

Set, as before, $K^{(\varepsilon)}(x) = K(x)\chi_{|x| \ge \varepsilon}$. Fix $f \in \mathscr{S}(\mathbb{R}^n)$ for some 1 . Obviously we have

$$f * K^{(\varepsilon)} = f * ((K_{\varepsilon^{-1}})^{(1)})_{\varepsilon} = f * W * \varphi_{\varepsilon} + f * ((K_{\varepsilon^{-1}})^{(1)} - W_{\varepsilon^{-1}} * \varphi)_{\varepsilon}.$$
 (5.3.23)

Next we prove the following estimate for all $\varepsilon > 0$:

$$\left| \left((K_{\varepsilon^{-1}})^{(1)} - W_{\varepsilon^{-1}} * \varphi \right)(x) \right| \le C(A_1 + A_2 + A_3)(1 + |x|)^{-n-\delta}$$
(5.3.24)

for all $x \in \mathbf{R}^n$. Indeed, for $|x| \ge 1$ we express the left-hand side in (5.3.24) as

$$\left|\int_{\mathbf{R}^n} \left(K_{\varepsilon^{-1}}(x) - K_{\varepsilon^{-1}}(x-y)\right) \varphi(y) \, dy\right|.$$

Since φ is supported in $|y| \le 1/2$, we have $|x| \ge 2|y|$, and condition (5.3.20) yields that the expression on the left-hand side of (5.3.24) is bounded by

$$\frac{A_2}{|x|^{n+\delta}}\int_{\mathbf{R}^n}|y|^{\delta}|\varphi(y)|\,dy\leq c\,\frac{A_2}{(1+|x|)^{n+\delta}}\,,$$

which proves (5.3.24) in the case $|x| \ge 1$. When |x| < 1, the left-hand side of (5.3.24) equals

$$(W_{\varepsilon^{-1}} * \boldsymbol{\varphi})(x) = \lim_{\delta_j \to 0} \int_{|x-y| \ge \delta_j} K_{\varepsilon^{-1}}(x-y) \boldsymbol{\varphi}(y) \, dy \tag{5.3.25}$$

for some sequence $\delta_j \downarrow 0$; see the discussion in Section 5.3.2. The expression in (5.3.25) is equal to $I_1 + I_2 + I_3$,

where

$$\begin{split} I_1 &= \int_{|x-y| > \frac{1}{8}} K_{\varepsilon^{-1}}(x-y) \varphi(y) \, dy, \\ I_2 &= \int_{|x-y| \le \frac{1}{8}} K_{\varepsilon^{-1}}(x-y) \left(\varphi(y) - \varphi(x)\right) dy, \\ I_3 &= \varphi(x) \lim_{\delta_j \to 0} \int_{\frac{1}{8} \ge |x-y| \ge \delta_j} K_{\varepsilon^{-1}}(x-y) \, dy. \end{split}$$

In I_1 we have $1/8 \le |x-y| \le 1 + 1/2 = 3/2$; hence I_1 is bounded by a multiple of A_1 . Since $|\varphi(x) - \varphi(y)| \le c|x-y|$, the same is valid for I_2 . Finally, I_3 is bounded by a multiple of A_3 . Combining these facts yields the proof of (5.3.24) in the case |x| < 1 as well.