5 Singular Integrals of Convolution Type

$$||T||_{L^1 \to L^{1,\infty}} \le C_n (A_2 + B),$$
 (5.3.13)

and T also extends to a bounded operator from $L^p(\mathbf{R}^n)$ to itself for 1 with norm

$$||T||_{L^p \to L^p} \le C'_n \max\left(p, (p-1)^{-1}\right)(A_2 + B),$$
 (5.3.14)

where C_n, C'_n are constants that depend on the dimension but not on r or p.

Proof. We discuss the case $r < \infty$ and we refer to Exercise 5.3.7 for the case $r = \infty$. Let $\alpha > 0$ be given. We fix a step function f given as a finite linear combination of characteristic functions of disjoint dyadic cubes. The class of such functions is dense in all the L^p spaces. Once (5.3.13) is obtained for such functions, a density argument gives that T admits an extension on L^1 that also satisfies (5.3.13). Therefore it suffices to prove (5.3.13) for such a function f.

Apply the Calderón–Zygmund decomposition to f at height $\gamma \alpha$, where γ is a positive constant to be chosen later. That is, write the function f as the sum

$$f = g + b = g + \sum_j b_j,$$

where conditions (1)–(6) of Theorem 5.3.1 are satisfied with the constant α replaced by $\gamma \alpha$. Since *f* is a finite linear combination of characteristic functions of disjoint dyadic cubes, there are only finitely many cubes Q_j that appear in the Calderón– Zygmund decomposition to *f*. Each b_j is supported in a dyadic cube Q_j with center y_j and the Q_j 's are pairwise disjoint. We denote by $\ell(Q)$ the side length of a cube Q. Let Q_j^* be the unique cube with sides parallel to the axes having the same center as Q_j and having side length $\ell(Q_j^*) = 2\sqrt{n}\ell(Q_j)$. Because of the form of *f*, each b_j is a bounded function supported in $\overline{Q_j}$, hence it is in L^r , thus each $T(b_j)$ is a well-defined L^r function. We observe that for all *j* and all $x \notin Q_j^*$ we have

$$T(b_j)(x) = \lim_{k \to \infty} \int_{k \ge |x-y| \ge \delta_k} K(x-y)b_j(y)\,dy = \int_{Q_j} K(x-y)b_j(y)\,dy\,,$$

where the last integral converges absolutely. This is a consequence of the Lebesgue dominated convergence theorem, based on the facts that b_j is bounded, that K is integrable over any compact annulus that does not contain the origin (cf. (5.3.4)), and that $x - Q_j$ is contained in such a compact annulus, since $x \notin Q_j^*$.

Next we use the cancellation of b_i in the following way:

$$\begin{split} \int_{(\cup_i Q_i^*)^c} \sum_j \left| T(b_j)(x) \right| dx \\ &= \int_{(\bigcup_i Q_i^*)^c} \sum_j \left| \int_{Q_j} b_j(y) \left(K(x-y) - K(x-y_j) \right) dy \right| dx \\ &\leq \sum_j \int_{(Q_j^*)^c} \int_{Q_j} |b_j(y)| |K(x-y) - K(x-y_j)| dy dx \end{split}$$

360