5 Singular Integrals of Convolution Type

5.3.2 General Singular Integrals

The kernels of the general singular integrals we will study are tempered distributions that coincide with functions away from the origin. The setup is as follows. Let *K* be a measurable function defined on $\mathbb{R}^n \setminus \{0\}$ that is integrable on compact subsets of $\mathbb{R}^n \setminus \{0\}$ and satisfies the size condition

$$\sup_{R>0} \int_{R \le |x| \le 2R} |K(x)| \, dx = A_1 < \infty.$$
(5.3.4)

This condition is less restrictive than the standard size estimate

$$\sup_{x \in \mathbf{R}^n} |x|^n |K(x)| < \infty, \tag{5.3.5}$$

but it is strong enough to capture size properties of kernels $K(x) = \Omega(x/|x|)/|x|^n$, where $\Omega \in L^1(\mathbf{S}^{n-1})$. We also note that condition (5.3.4) is equivalent to

$$\sup_{R>0} \frac{1}{R} \int_{|x| \le R} |K(x)| \, |x| \, dx < \infty.$$
(5.3.6)

See Exercise 5.3.1.

The size condition (5.3.4) is sufficient to make the restriction of K(x) on $|x| > \delta$ a tempered distribution (for any $\delta > 0$). Indeed, for $\varphi \in \mathscr{S}(\mathbb{R}^n)$ we have

$$\begin{split} \int_{|x|\geq 1} |K(x)\varphi(x)| \, dx &\leq \sum_{m=0}^{\infty} \int_{2^{m+1}\geq |x|\geq 2^m} \frac{|K(x)|(1+|x|)^N |\varphi(x)|}{(1+2^m)^N} \, dx \\ &\leq \sum_{m=0}^{\infty} \frac{A_1}{(1+2^m)^N} \sup_{x\in \mathbf{R}^n} (1+|x|)^N |\varphi(x)| \,, \end{split}$$

and this expression is bounded by a constant times a finite sum of Schwartz seminorms of φ .

We are interested in tempered distributions *W* on \mathbb{R}^n that extend the function *K* defined on $\mathbb{R}^n \setminus \{0\}$ and have the form

$$\langle W, \varphi \rangle = \lim_{j \to \infty} \int_{|x| \ge \delta_j} K(x)\varphi(x) dx, \qquad \varphi \in \mathscr{S}(\mathbf{R}^n),$$
 (5.3.7)

for some sequence $\delta_j \downarrow 0$ as $j \to \infty$. It is not hard to see that there exists a tempered distribution *W* satisfying (5.3.7) for all $\varphi \in \mathscr{S}(\mathbf{R}^n)$ if and only if

$$\lim_{j \to \infty} \int_{1 \ge |x| \ge \delta_j} K(x) \, dx = L \tag{5.3.8}$$

exists. See Exercise 5.3.2. If such a distribution W exists it may not be unique, since it depends on the choice of the sequence δ_i . Two different sequences tending to zero