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Remark 5.2.9. It follows from the proof of Theorem 5.2.7 and from Theorems 5.1.7
and 5.1.12 that whenever Ω is an odd function on Sn−1, we have

∥∥TΩ

∥∥
Lp→Lp ≤

∥∥Ω
∥∥

L1

{
a p when p≥ 2,
a(p−1)−1 when 1 < p≤ 2,∥∥T (∗∗)

Ω

∥∥
Lp→Lp ≤

∥∥Ω
∥∥

L1

{
a p when p≥ 2,
a(p−1)−2 when 1 < p≤ 2,

for some a > 0 independent of p and the dimension.

5.2.4 Singular Integrals with Even Kernels

Since a general integrable function Ω on Sn−1 with mean value zero can be written
as a sum of an odd and an even function, it suffices to study singular integral opera-
tors TΩ with even kernels. For the rest of this section, fix an integrable even function
Ω on Sn−1 with mean value zero. The following idea is fundamental in the study of
such singular integrals. Proposition 5.1.16 implies that

TΩ =−
n

∑
j=1

R jR jTΩ . (5.2.23)

If R jTΩ were another singular integral operator of the form TΩ j for some odd Ω j,
then the boundedness of TΩ would follow from that of TΩ j via the identity (5.2.23)
and Theorem 5.2.7. It turns out that R jTΩ does have an odd kernel, but it may not be
integrable on Sn−1 unless Ω itself possesses an additional amount of integrability.
The amount of extra integrability needed is logarithmic, more precisely of this sort:

cΩ =
∫

Sn−1
|Ω(θ)| log(e+ |Ω(θ)|)dθ < ∞ . (5.2.24)

Observe that we always have ∥∥Ω
∥∥

L1 ≤ cΩ .

The following theorem is the main result of this section.

Theorem 5.2.10. Let n ≥ 2 and let Ω be an even integrable function on Sn−1 with
mean value zero that satisfies (5.2.24). Then the corresponding singular integral
TΩ is bounded on Lp(Rn), 1 < p < ∞, with norm at most a dimensional constant
multiple of the quantity max

(
(p−1)−2, p2

)
(cΩ +1).

If the operator TΩ in Theorem 5.2.10 is weak type (1,1), then the estimate on the
Lp operator norm of TΩ can be improved to ‖TΩ‖Lp→Lp ≤Cn(p−1)−1(cΩ +1) as
p→ 1. This is indeed the case; see the historical comments at the end of this chapter.
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Proof. Let WΩ be the distributional kernel of TΩ . We have that WΩ coincides with
the function Ω(x/|x|)|x|−n on Rn \{0}. Using Proposition 5.2.3 and the fact that Ω

is an even function, we obtain the formula

ŴΩ (ξ ) =
∫

Sn−1
Ω(θ) log

1
|ξ ·θ |

dθ , (5.2.25)

which implies that ŴΩ is itself an even function. Now, using Exercise 5.2.3 and
condition (5.2.24), we conclude that ŴΩ is a bounded function. Therefore, TΩ is L2

bounded. To obtain the Lp boundedness of TΩ , we use the idea mentioned earlier
involving the Riesz transforms. In view of (5.1.46), we have that

TΩ =−
n

∑
j=1

R jTj, (5.2.26)

where Tj = R jTΩ . Equality (5.2.26) makes sense as an operator identity on L2(Rn),
since TΩ and each R j are well defined and bounded on L2(Rn).

The kernel of the operator Tj is the inverse Fourier transform of the distribu-

tion −i ξ j
|ξ |ŴΩ (ξ ), which we denote by K j. At this point we know only that K j is

a tempered distribution whose Fourier transform is the function −i ξ j
|ξ |ŴΩ (ξ ). Our

first goal is to show that K j coincides with an integrable function on an annulus. To
prove this assertion we write

WΩ =W 0
Ω +W 1

Ω +W ∞
Ω ,

where W 0
Ω

is a distribution and W 1
Ω
,W ∞

Ω
are functions defined by

〈
W 0

Ω ,ϕ
〉
= lim

ε→0

∫
ε<|x|≤ 1

2

Ω(x/|x|)
|x|n

ϕ(x)dx ,

W 1
Ω (x) =

Ω(x/|x|)
|x|n

χ 1
2≤|x|≤2 ,

W ∞
Ω (x) =

Ω(x/|x|)
|x|n

χ2<|x| .

We now fix a j ∈ {1,2, . . . ,n} and we write

K j = K0
j +K1

j +K∞
j ,

where

K0
j =

(
− i ξ j
|ξ |Ŵ

0
Ω
(ξ )
)∨ ,

K1
j =

(
− i ξ j
|ξ |Ŵ

1
Ω
(ξ )
)∨ ,

K∞
j =

(
− i ξ j
|ξ |Ŵ

∞
Ω
(ξ )
)∨ .

Notice that K0
j is well defined via Theorem 2.3.21.
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Define the annulus

A = {x 2 Rn : 2/3 < |x|< 3/2}.

For a smooth function f supported in the annulus 2/3 < |x|< 3/2 we have

⌦
K0

j ,f
↵

=
⌦
(�i x j

|x |
cW 0

W (x )
�_

,f
↵

=
⌦
� i x j

|x |
cW 0

W (x ),f_(x )
↵

=
⌦cW 0

W (x ),�i x j
|x |f

_(x )
↵

=
⌦
W 0

W ,
�
� i x j

|x |f
_(x )

�^↵

= �
⌦
W 0

W , R̂ j(f)
↵

= � lim
e!0

Z

e<|y|<1/2

W(y/|y|)
|y|n R j(f)(�y)dy (W is even)

= �
G ( n+1

2 )

p n+1
2

lim
e!0

Z

e<|y|<1/2

W(y/|y|)
|y|n

Z

Rn

y j � x j

|y� x|n+1 f(x)dxdy,

noticing that |y� x| stays away from zero when |y| < 1/2 and x lies in A. It should
be noted that the function z =

�
� i x j

|x |f
_(x )

�^ is not Schwartz, but it is Lipschitz,
i.e., it satisfies |z (x)� z (y)|  Cf |x� y|, and the compactly supported tempered
distribution W 0

W can be extended to act on such functions.
It follows that K0

j coincides in A with the function inside the absolute value be-
low:

�����
G ( n+1

2 )

p n+1
2

lim
e!0

Z

e<|y|< 1
2

x j � y j

|x� y|n+1
W(y/|y|)

|y|n dy

����� (5.2.27)

=

�����
G ( n+1

2 )

p n+1
2

Z

|y|< 1
2

✓
x j � y j

|x� y|n+1 �
x j

|x|n+1

◆
W(y/|y|)

|y|n dy

����� (5.2.28)


Z

|y| 1
2

Cn|y|
|W(y/|y|)|

|y|n dy

=C0
n
��W

��
L1 ,

where we used the fact that W(y/|y|)|y|�n has integral zero over annuli of the form
e < |y|< 1

2 , the mean value theorem applied to the function x j|x|�(n+1), and the fact
that |x� y|� 1/6 for x in the annulus A. We conclude that on A, K0

j coincides with
the bounded function inside the absolute value in (5.2.27).
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Likewise, for x ∈ A we have

Γ ( n+1
2 )

π
n+1

2

∣∣∣∣∫|y|>2

x j− y j

|x− y|n+1
Ω(y/|y|)
|y|n

dy
∣∣∣∣ (5.2.29)

≤
Γ ( n+1

2 )

π
n+1

2

∫
|y|>2

1
|x− y|n

|Ω(y/|y|)|
|y|n

dy

≤
Γ ( n+1

2 )

π
n+1

2

∫
|y|>2

4n

|y|2n |Ω(y/|y|)|dy

=C
∥∥Ω
∥∥

L1 ,

from which it follows that on the annulus A, K∞
j coincides with the bounded function

inside the absolute value in (5.2.29) or in (5.2.28).
Now observe that condition (5.2.24) gives that the function W 1

Ω
satisfies∫

|x|≤2
|W 1

Ω (x)| log(e+ |W 1
Ω (x)|)dx

≤
∫ 2

1/2

∫
Sn−1

|Ω(θ)|
rn log

[
e+2n|Ω(θ)|

]
dθrn−1 dr

≤ (log4)
[
n(log2)

∥∥Ω
∥∥

L1 + cΩ

]
≤ c′n cΩ < ∞ .

Since the Riesz transform R j is countably subadditive and maps Lp to Lp with norm
at most 4(p−1)−1 for 1 < p < 2, it follows from Exercise 1.3.7 that K1

j = R j(W 1
Ω
)

is integrable over the ball |x| ≤ 3/2 and moreover, it satisfies∫
A
|K1

j (x)|dx≤Cn

[∫
|x|≤2
|W 1

Ω (x)| log+ |W 1
Ω (x)|dx+1

]
≤C′n (cΩ +1) .

Furthermore, since K̂ j is homogeneous of degree zero, K j is a homogeneous
distribution of degree −n (Exercise 2.3.9). This means that for all test functions ϕ

and all λ > 0 we have 〈
K j,δ

λ (ϕ)
〉
=
〈
K j,ϕ

〉
, (5.2.30)

where δ λ (ϕ)(x) = ϕ(λx). But for ϕ ∈C ∞
0 supported in the annulus 3/4< |x|< 4/3

and for λ in (8/9,9/8) we have that δ λ−1
(ϕ) is supported in A and thus we can

express (5.2.30) as convergent integrals as follows:∫
Rn

K j(x)ϕ(x)dx =
∫

Rn
K j(x)ϕ(λ−1x)dx =

∫
Rn

λ
nK j(λx)ϕ(x)dx . (5.2.31)

From this it would be ideal to be able to directly obtain that K j(x)= λ nK j(λx) for all
8/9< |x|< 9/8 and 8/9< λ < 9/8, in particular when λ = |x|−1. But unfortunately,
we can only deduce that for every λ ∈ (8/9,9/8), K j(x) = λ nK j(λx) holds for all x
in the annulus except a set of measure zero that depends on λ . To be able to define
the restriction of K j on Sn−1, we employ a more delicate argument.
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For any J subinterval of [8/9,9/8] we obtain from (5.2.31) that∫
Rn

K j(x)ϕ(x)dx =
∫

Rn
−
∫

J
λ

nK j(λx)dλ ϕ(x)dx ,

where integral with the slashed integral denotes the average of a function over the set
J. Since ϕ was an arbitrary C ∞

0 function supported in the annulus 3/4 < |x|< 4/3,
it follows that for every J subinterval of [8/9,9/8], there is a null1 subset EJ of the
annulus A′ = {x : 27/32 < |x|< 32/27} such that

K j(x) =−
∫

J
λ

nK j(λx)dλ (5.2.32)

for all x ∈ A′ \EJ .
Let J0 = [

√
8/9,

√
9/8]. We claim that there is a null subset E of A′ such that for

all x ∈ A′ \E we have

−
∫

J0

λ
nK j(λx)dλ =−

∫
rJ0

λ
nK j(λx)dλ (5.2.33)

for every r in J0. Indeed, let E be the union of ErJ0 over all r in J0∩Q. Then in view
of (5.2.32), identity (5.2.33) holds for x ∈ A′ \E and J0 ∩Q. But for a fixed x in
A′ \E, the function of r on the right hand side of (5.2.33) is constant on the rationals
and is also continuous (in r), hence it must be constant for all r ∈ J0. Thus the claim
follows since both sides of (5.2.33) are equal to (5.2.32).

Writing x = δθ , where 27/32 < δ < 32/27 and θ ∈ Sn−1, it follows by Fubini’s
theorem that there is a δ ∈ (27/32,32/27) (in fact almost all δ have this property)
such that

−
∫

J0

λ
nK j(λδθ)dλ =−

∫
rJ0

λ
nK j(λδθ)dλ (5.2.34)

for almost all θ ∈ Sn−1 and all r ∈ J0. We fix such a δ , which we denote δ0.
We now define a function Ω j on Sn−1 by setting

Ω j(θ) =−
∫

J0

δ
n
0 λ

nK j(λδ0θ)dλ =−
∫

rJ0

δ
n
0 λ

nK j(λδ0θ)dλ

for all r ∈ J0. The function Ω j is defined almost everywhere and is integrable over
Sn−1, since K j is integrable over the annulus A.

Let e1 = (1,0, . . . ,0). Let Ψ be a C ∞
0 (Rn) nonzero, nonnegative, radial, and sup-

ported in the annulus 32/(27
√

2)< |x|< 27
√

2/32 around Sn−1. We start with

Ω j(θ) =−
∫

r−1J0

δ
n
0 λ

nK j(λδ0θ)dλ =−
∫

J0

δ
n
0 rn

λ
nK j(rλδ0θ)dλ ,

which holds for all r ∈ J0, we multiply by Ψ(re1), and we integrate over Sn−1 and
over (0,∞) with respect to the measure dr/r. We obtain

1 here we are making use of the following version of du Bois-Reymond’s lemma: if U is an open
subset of Rn and g is an integrable function on U such that

∫
U g(x)ψ(x)dx = 0 for all ψ smooth

functions with compact support contained in U , then g = 0 a.e. on U .
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∞

0
Ψ(re1)

dr
r

∫
Sn−1

Ω j(θ)dθ = −
∫

J0

∫
∞

0

∫
Sn−1

δ
n
0 λ

nK j(λδ0rθ)Ψ(re1)rndθ
dr
r

dλ

= −
∫

J0

∫
Rn

δ
n
0 λ

nK j(λδ0x)Ψ(x)dxdλ

= −
∫

J0

∫
Rn

K j(x)Ψ((λδ0)
−1x)dxdλ

= −
∫

J0

〈
K j,Ψ

〉
dλ ,

=
〈
K j,Ψ

〉
in view of the homogeneity of K j. But, as Ψ̂ =Ψ∨, for some constant c′

Ψ
we have

〈
K j,Ψ

〉
=
〈
K̂ j,Ψ̂

∨ 〉= ∫
Rn

−iξ j

|ξ |
ŴΩ (ξ )Ψ̂(ξ )dξ = c′Ψ

∫
Sn−1

−iθ j

|θ |
ŴΩ (θ)dθ = 0,

since by (5.2.25), −iξ j
|ξ | ŴΩ (ξ ) is an odd function. We conclude that Ω j has mean

value zero over Sn−1.
Thus Ω j ∈ L1(Sn−1) has mean value zero and the distribution WΩ j is well defined.

We claim that
K j =WΩ j . (5.2.35)

To establish (5.2.35), we show first that
〈
K j,ϕ

〉
=
〈
WΩ j ,ϕ

〉
whenever ϕ is sup-

ported in the annulus 8/9 < |x|< 9/8. Using (5.2.32) we have∫
Rn

K j(x)ϕ(x)dx =
∫

Rn
−
∫

J0

K j(δ0λx)δ n
0 λ

ndλ ϕ(x)dx

=
∫

∞

0

∫
Sn−1
−
∫

J0

K j(δ0λ rθ)δ n
0 λ

nrn dλ ϕ(rθ)dθ
dr
r

=
∫

∞

0

∫
Sn−1
−
∫

rJ0

K j(δ0λ
′
θ)δ n

0 (λ
′)ndλ

′
ϕ(rθ)dθ

dr
r

=
∫

∞

0

∫
Sn−1

Ω j(θ)ϕ(rθ)dθ
dr
r

=
〈
WΩ j ,ϕ

〉
,

having used (5.2.34) in the second to last equality.
Given a general C ∞

0 function ϕ whose support is contained in an annulus of the
form M−1 < |x|<M, for some M > 0, via a smooth partition of unity, we write ϕ as a
finite sum of smooth functions ϕk whose supports are contained in annuli of the form
8s/9 < |x| < 9s/8 for some s > 0. These annuli can be brought inside the annulus
8/9< |x|< 9/8 by a dilation. Since both K j and WΩ j are homogeneous distributions
of degree −n and agree on the annulus 8/9 < |x| < 9/8 they must agree on annuli
8s/9 < |x| < 9s/8. Consequently, 〈K j,ϕ〉 = 〈WΩ j ,ϕ〉 for all ϕ ∈ C ∞

0 (Rn \ {0}).
Therefore, K j−WΩ j is supported at the origin, and since it is homogeneous of degree
−n, it must be equal to bδ0, a constant multiple of the Dirac mass. But K̂ j is an
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odd function and hence K j is also odd. It follows that WΩ j is an odd function on
Rn \{0}, which implies that Ω j is an odd function. We say that u ∈S ′(Rn) is odd
if ũ = −u, where ũ is defined by 〈ũ,ψ〉 = 〈u, ψ̃〉 for all ψ ∈ S (Rn) and ψ̃(x) =
ψ(−x). We have that K j−WΩ j is an odd distribution, and thus bδ0 must be an odd
distribution. But if bδ0 is odd, then b= 0. We conclude that for each j there exists an
odd integrable function Ω j on Sn−1 with ‖Ω j‖L1 controlled by a constant multiple
of cΩ such that (5.2.35) holds.

Then we use (5.2.26) and (5.2.35) to write

TΩ =−
n

∑
j=1

R jTΩ j ,

and appealing to the boundedness of each TΩ j (Theorem 5.2.7) and to that of the
Riesz transforms, we obtain the required Lp boundedness for TΩ . �

We note that Theorem 5.2.10 holds for all Ω ∈ L1(Sn−1) that satisfy (5.2.24), not
necessarily even Ω . Simply write Ω = Ωe +Ωo , where Ωe is even and Ωo is odd,
and check that condition (5.2.24) holds for Ωe.

5.2.5 Maximal Singular Integrals with Even Kernels

We have the corresponding theorem for maximal singular integrals.

Theorem 5.2.11. Let n ≥ 2 and let Ω be an even integrable function on Sn−1 with
mean value zero that satisfies (5.2.24). Then the corresponding maximal singular
integral T (∗∗)

Ω
, defined in (5.2.4), is bounded on Lp(Rn) for 1 < p < ∞ with norm at

most a dimensional constant multiple of max(p2,(p−1)−3)(cΩ +1).

Proof. For f ∈ L1
loc(R

n), we define the maximal function of f in the direction θ by
setting

Mθ ( f )(x) = sup
a>0

1
2a

∫
|r|≤a
| f (x− rθ)|dr . (5.2.36)

In view of Exercise 5.2.5 we have that Mθ is bounded on Lp(Rn) with norm at most
3 p(p−1)−1.

Fix Φ a smooth radial function such that Φ(x) = 0 for |x| ≤ 1/4, Φ(x) = 1 for
|x| ≥ 3/4, and 0≤Φ(x)≤ 1 for all x in Rn. For f ∈ Lp(Rn) and 0 < ε < N < ∞ we
introduce the smoothly truncated singular integral

T̃ (ε,N)
Ω

( f )(x) =
∫

Rn

Ω
( y
|y|
)

|y|n
(

Φ
( y

ε

)
−Φ

( y
N

))
f (x− y)dy

and the corresponding maximal singular integral operator

T̃ (∗∗)
Ω

( f ) = sup
0<N<∞

sup
0<ε<N

|T̃ (ε,N)
Ω

( f )| . (5.2.37)

It suffices to work with T̃ (∗∗)
Ω

instead of T (∗∗)
Ω

in view of the following argument.
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For f in Lp(Rn) (for some 1 < p < ∞), we have∣∣∣|T̃ (ε,N)
Ω

( f )(x)|− |T (ε,N)
Ω

( f )(x)|
∣∣∣

≤
∣∣T̃ (ε,N)

Ω
( f )(x)−T (ε,N)

Ω
( f )(x)

∣∣
=

∣∣∣∣[ ∫
|y|≥ ε

4

Ω
( y
|y|
)

|y|n
Φ
( y

ε

)
f (x−y)dy−

∫
|y|≥N

4

Ω
( y
|y|
)

|y|n
Φ
( y

N

)
f (x−y)dy

]

−
[ ∫
|y|≥ε

|Ω
( y
|y|
)
|

|y|n
Φ
( y

ε

)
f (x− y)dy−

∫
|y|≥N

|Ω
( y
|y|
)
|

|y|n
Φ
( y

N

)
f (x− y)dy

]∣∣∣∣
≤

∫
Sn−1

|Ω(θ)|
[

4
ε

∫
ε

ε
4

| f (x− rθ)|dr+
4
N

∫ N

N
4

| f (x− rθ)|dr
]

dθ

≤ 16
∫

Sn−1
|Ω(θ)|Mθ ( f )(x)dθ .

Taking the supremum over N > ε > 0 and using the result of Exercise 5.2.5 we
conclude that∥∥T̃ (∗∗)

Ω
( f )−T (∗∗)

Ω
( f )
∥∥

Lp ≤ 100
∥∥Ω
∥∥

L1 max(1,(p−1)−1)
∥∥ f
∥∥

Lp .

This implies that it suffices to obtain the required Lp bound for the smoothly trun-
cated maximal singular integral operator T̃ (∗∗)

Ω
.

In proving the required estimate, we may assume that the even function Ω is
bounded. For, if we know that for Ω even and bounded we had∥∥T̃ (∗∗)

Ω

∥∥
Lp→Lp ≤Cn max(p2,(p−1)−3)(cΩ +1),

then given a general even function Ω in L logL(Sn−1) we set Ω m = Ω χ|Ω |≤m−κm,
where κm are chosen so that

∫
Sn−1 Ω m dσ = 0 for all m≥ 1. Then for all x ∈ Rn

T̃ (ε,N)
Ω

( f )(x)≤ liminf
m→∞

T̃ (ε,N)
Ω m ( f )(x)≤ liminf

m→∞
T̃ (∗∗)

Ω m ( f )(x)

whenever f ∈ Lp ∩ L∞. Taking the supremum over ε,N > 0 and applying Fatou’s
lemma and a density argument (passing from Lp∩L∞ to Lp) we obtain∥∥T̃ (∗∗)

Ω

∥∥
Lp→Lp ≤ liminf

m→∞

∥∥T̃ (∗∗)
Ω m

∥∥
Lp→Lp ≤CnC(p) liminf

m→∞
(cΩ m +1)=CnC(p)(cΩ +1),

where C(p) = max(p2,(p−1)−3).
So we fix a bounded function Ω on Sn−1 with integral zero. Let K j, Ω j, and

Tj be as in the previous theorem, and let Fj be the Riesz transform of the function
Ω(x/|x|)Φ(x)|x|−n. Let f ∈ Lp(Rn). A calculation yields the identity

T̃ (ε,N)
Ω

( f )(x) =
∫

Rn

[
1
εn

Ω( y
ε
/| y

ε
|)

| y
ε
|n

Φ( y
ε
)− 1

Nn

Ω( y
N /|

y
N |)

| y
N |n

Φ( y
N )

]
f (x− y)dy

= −
( n

∑
j=1

[
1
εn Fj

( ·
ε

)
− 1

Nn Fj
( ·

N

)]
∗R j( f )

)
(x) ,
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where in the last step we used Proposition 5.1.16. Therefore we may write

−T̃ (ε,N)
Ω

( f )(x) =
n

∑
j=1

∫
Rn

[
1
εn Fj

( x−y
ε

)
− 1

Nn Fj
( x−y

N

)]
R j( f )(y)dy

= A(ε,N)
1 ( f )(x)+A(ε,N)

2 ( f )(x)+A(ε,N)
3 ( f )(x) ,

(5.2.38)

where

A(ε,N)
1 ( f )(x) =

n

∑
j=1

1
εn

∫
|x−y|≤ε

Fj
( x−y

ε

)
R j( f )(y)dy

−
n

∑
j=1

1
Nn

∫
|x−y|≤N

Fj
( x−y

N

)
R j( f )(y)dy ,

A(ε,N)
2 ( f )(x) =

n

∑
j=1

∫
Rn

[
1
εn χ|x−y|>ε

{
Fj
( x−y

ε

)
−K j

( x−y
ε

)}
− 1

Nn χ|x−y|>N
{

Fj
( x−y

N

)
−K j

( x−y
N

)}]
R j( f )(y)dy ,

A(ε,N)
3 ( f )(x) =

n

∑
j=1

∫
Rn

[
1
εn χ|x−y|>ε K j

( x−y
ε

)
− 1

Nn χ|x−y|>NK j
( x−y

N

)]
R j( f )(y)dy .

It follows from the definitions of Fj and K j that

Fj(z)−K j(z) =
Γ ( n+1

2 )

π
n+1

2
lim
ε→0

∫
ε≤|y|

Ω(y/|y|)
|y|n

(
Φ(y)−1

) z j− y j

|z− y|n+1 dy

=
Γ ( n+1

2 )

π
n+1

2

∫
|y|≤ 3

4

Ω(y/|y|)
|y|n

(
Φ(y)−1

){ z j− y j

|z− y|n+1 −
z j

|z|n+1

}
dy

whenever |z| ≥ 1. But using the mean value theorem, the last expression is easily
seen to be bounded by

Cn

∫
|y|≤ 3

4

|Ω(y/|y|)|
|y|n

|y|
|z|n+1 dy =C′n

∥∥Ω
∥∥

L1 |z|−(n+1) ,

whenever |z| ≥ 1. Using this estimate, we obtain that the jth term in A(ε,N)
2 ( f )(x) is

bounded by

Cn
‖Ω‖L1

εn

∫
|x−y|>ε

|R j( f )(y)|dy
(|x− y|/ε)n+1 ≤Cn

2‖Ω‖L1

2−nεn

∫
Rn

|R j( f )(y)|dy(
1+ |x−y|

ε

)n+1 .

It follows that for functions f in Lp we have

sup
0<ε<N<∞

|A(ε,N)
2 ( f )| ≤Cn

∥∥Ω
∥∥

L1M(R j( f )) ,
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in view of Theorem 2.1.10. (M here is the Hardy–Littlewood maximal operator.)
By Theorem 2.1.6, M maps Lp(Rn) to itself with norm bounded by a dimensional
constant multiple of max(1,(p−1)−1). Since by Remark 5.2.9 the norm

∥∥R j
∥∥

Lp→Lp

is controlled by a dimensional constant multiple of max(p,(p−1)−1), it follows that∥∥ sup
0<ε<N<∞

|A(ε,N)
2 ( f )|

∥∥
Lp ≤Cn

∥∥Ω
∥∥

L1 max(p,(p−1)−2)
∥∥ f
∥∥

Lp . (5.2.39)

Next, recall that in the proof of Theorem 5.2.10 we showed that

K j(x) =
Ω j(x/|x|)
|x|n

,

where Ω j are integrable functions on Sn−1 that satisfy∥∥Ω j
∥∥

L1 ≤Cn (cΩ +1) . (5.2.40)

Consequently, for functions f in Lp(Rn) we have

sup
0<ε<N<∞

|A(ε,N)
3 ( f )| ≤ 2

n

∑
j=1

T (∗∗)
Ω j

(R j( f )) ,

and by Remark 5.2.9 this last expression has Lp norm at most a dimensional constant
multiple of

∥∥Ω j
∥∥

L1 max(p,(p−1)−2)
∥∥R j( f )

∥∥
Lp . It follows that∥∥∥ sup

0<ε<N<∞

|A(ε,N)
3 ( f )|

∥∥∥
Lp
≤Cn max(p2,(p−1)−3)(cΩ +1)

∥∥ f
∥∥

Lp . (5.2.41)

Finally, we turn our attention to the term A(ε,N)
1 ( f ). To prove the required esti-

mate, we first show that there exist nonnegative homogeneous of degree zero func-
tions G j on Rn that satisfy

|Fj(x)| ≤ G j(x) when |x| ≤ 1 (5.2.42)

and ∫
Sn−1
|G j(θ)|dθ ≤Cn cΩ . (5.2.43)

To prove (5.2.42), first note that if |x| ≤ 1/8, then

|Fj(x)| =
Γ ( n+1

2 )

π
n+1

2

∣∣∣∣∫Rn

Ω(y/|y|)
|y|n

Φ(y)
x j− y j

|x− y|n+1 dy
∣∣∣∣

≤Cn

∫
|y|≥ 1

4

|Ω(y/|y|)|
|y|2n dy

≤C′n
∥∥Ω
∥∥

L1 .
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We now fix an x satisfying 1/8≤ |x| ≤ 1 and we write

|Fj(x)| ≤Φ(x)|K j(x)|+ |Fj(x)−Φ(x)K j(x)|

≤ |K j(x)|+
Γ ( n+1

2 )

π
n+1

2

∣∣∣∣ lim
ε→0

∫
|y|>ε

x j− y j

|x− y|n+1

(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣

= |K j(x)|+
Γ ( n+1

2 )

π
n+1

2

(
P1(x)+P2(x)+P3(x)

)
,

where

P1(x) =

∣∣∣∣∫|y|≤ 1
16

(
x j− y j

|x− y|n+1 −
x j

|x|n+1

)(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣ ,

P2(x) =

∣∣∣∣∫ 1
16≤|y|≤2

x j− y j

|x− y|n+1

(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣ ,

P3(x) =

∣∣∣∣∫|y|≥2

x j− y j

|x− y|n+1

(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣ .

But since 1/8≤ |x| ≤ 1, we see that

P1(x)≤Cn

∫
|y|≤ 1

16

|y|
|x|n+1

|Ω(y/|y|)|
|y|n

dy≤C′n
∥∥Ω
∥∥

L1

and that

P3(x)≤Cn

∫
|y|≥2

|Ω(y/|y|)|
|y|2n dy≤C′n

∥∥Ω
∥∥

L1 .

For P2(x) we use the estimate |Φ(y)−Φ(x)| ≤C|x− y| to obtain

P2(x) ≤
∫

1
16≤|y|≤2

C
|x− y|n−1

|Ω(y/|y|)|
|y|n

dy

≤ 4C
∫

1
16≤|y|≤2

|Ω(y/|y|)|
|x− y|n−1|y|n− 1

2
dy

≤ 4C
∫

Rn

|Ω(y/|y|)|
|x− y|n−1|y|n− 1

2
dy .

Recall that K j(x) = Ω j(x/|x|)|x|−n. We now set

G j(x) =Cn

(∥∥Ω
∥∥

L1 +
∣∣∣Ω j

( x
|x|

)∣∣∣+ |x|n− 3
2

∫
Rn

|Ω(y/|y|)|dy

|x− y|n−1|y|n− 1
2

)
(5.2.44)

and we observe that G j is a homogeneous of degree zero function, it satisfies
(5.2.42), and it is integrable over the annulus 1

2 ≤ |x| ≤ 2. To verify the last as-
sertion, we split up the double integral
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I =
∫

1
2≤|x|≤2

∫
Rn

|Ω(y/|y|)|dy

|x− y|n−1|y|n− 1
2

dx

into the pieces 1/4≤ |y| ≤ 4, |y|> 4, and |y|< 1/4. The part of I where 1/4≤ |y| ≤ 4
is pointwise bounded by a constant multiple of∫

1
4≤|y|≤4

∣∣∣Ω( y
|y|

)∣∣∣ ∫
1
2≤|x|≤2

dx
|y− x|n−1 dy≤

∫
1
4≤|y|≤4

∣∣∣Ω( y
|y|

)∣∣∣ ∫
|x−y|≤6

dx
|y− x|n−1 dy ,

which is pointwise controlled by a constant multiple of ‖Ω‖L1 . In the part of I where
|y| > 4 we use that |x− y|−n+1 ≤ (|y|/2)−n+1 to obtain rapid decay in y and hence
a bound by a constant multiple of ‖Ω‖L1 . Finally, in the part of I where |y| < 1/4
we use that |x− y|−n+1 ≤ (1/4)−n+1, and then we also obtain a similar bound. It
follows from (5.2.44) and (5.2.40) that∫

1
2≤|x|≤2

|G j(x)|dx≤Cn
(
‖Ω‖L1 +‖Ω j‖L1 +‖Ω‖L1

)
≤Cn cΩ .

Since G j is homogeneous of degree zero, we deduce (5.2.43).
To complete the proof, we argue as follows:

sup
0<ε<N<∞

|A(ε,N)
1 ( f )(x)|

≤ 2sup
ε>0

n

∑
j=1

1
εn

∫
|z|≤ε

|Fj

( z
ε

)
| |R j( f )(x− z)|dz

≤ 2sup
ε>0

n

∑
j=1

1
εn

∫
ε

r=0

∫
Sn−1

∣∣∣Fj

( rθ

ε

)∣∣∣ |R j( f )(x− rθ)|rn−1 dθ dr

≤ 2
n

∑
j=1

∫
Sn−1
|G j(θ)|

{
sup
ε>0

1
εn

∫
ε

r=0
|R j( f )(x− rθ)|rn−1 dr

}
dθ

≤ 4
n

∑
j=1

∫
Sn−1
|G j(θ)|Mθ (R j( f ))(x)dθ .

Using (5.2.43) together with the Lp boundedness of the Riesz transforms and of Mθ

we obtain∥∥∥ sup
0<ε<N<∞

|A(ε,N)
1 ( f )|

∥∥∥
Lp
≤Cn max(p2,(p−1)−3)(cΩ +1)

∥∥ f
∥∥

Lp . (5.2.45)

Combining (5.2.45), (5.2.39), and (5.2.41), we obtain the required conclusion. �

The following corollary is a consequence of Theorem 5.2.11.

Corollary 5.2.12. Let n≥ 2 and Ω be as in Theorem 5.2.11. Then for 1< p<∞ and
f in Lp(Rn) the functions T (ε,N)

Ω
( f ) converge to TΩ ( f ) in Lp and almost everywhere

as ε → 0 and N→ ∞.
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Proof. The a.e. convergence is a consequence of Theorem 2.1.14. The Lp conver-
gence is a consequence of the Lebesgue dominated convergence theorem since for
f ∈ Lp(Rn) we have that |T (ε,N)

Ω
( f )| ≤ T (∗∗)

Ω
( f ) and T (∗∗)

Ω
( f ) is in Lp(Rn). �

Exercises

5.2.1. Show that the directional Hilbert transform Hθ is given by convolution with
the distribution wθ in S ′(Rn) defined by

〈
wθ ,ϕ

〉
=

1
π

p.v.
∫ +∞

−∞

ϕ(tθ)
t

dt.

Compute the Fourier transform of wθ and prove that Hθ maps L1(Rn) to L1,∞(Rn).[
Hint: Use that H maps L1(R) to L1,∞(R), which follows from Theorem 5.3.3.

]
5.2.2. Extend the definitions of WΩ and TΩ to Ω = dµ a finite signed Borel measure
on Sn−1 with mean value zero. Compute the Fourier transform of Wdµ and find a
necessary and sufficient condition on measures dµ so that Tdµ is L2 bounded. Notice
that the directional Hilbert transform Hθ is a special case of such an operator Tdµ .

5.2.3. Use the inequality AB ≤ A logA+ eB for A ≥ 1 and B > 0 to prove that if
Ω satisfies (5.2.24) then it must satisfy (5.2.16). Conclude that if |Ω | log+ |Ω | is in
L1(Sn−1), then TΩ is L2 bounded.[
Hint: Use that

∫
Sn−1 |ξ ·θ |−α dθ converges when α < 1. See Appendix D.3.

]
5.2.4. Let Ω be a nonzero integrable function on Sn−1 with mean value zero. Let f
be integrable over Rn with nonzero integral. Prove that TΩ ( f ) is not in L1(Rn).[
Hint: Show that T̂Ω ( f ) cannot be continuous at zero.

]
5.2.5. Let θ ∈ Sn−1. Use an identity similar to (5.2.18) to show that the maximal

operators

sup
a>0

1
a

∫ a

0
| f (x− rθ)|dr , sup

a>0

1
2a

∫ +a

−a
| f (x− rθ)|dr

are Lp(Rn) bounded for 1 < p < ∞ with norm at most 3 p(p−1)−1.

5.2.6. For Ω ∈ L1(Sn−1) and f locally integrable on Rn, define

MΩ ( f )(x) = sup
R>0

1
vnRn

∫
|y|≤R
|Ω(y/|y|)| | f (x− y)|dy .

Apply the method of rotations to prove that MΩ maps Lp(Rn) to itself for 1< p<∞.

5.2.7. Let Ω(x,θ) be a function on Rn×Sn−1 satisfying
(a) Ω(x,−θ) =−Ω(x,θ) for all x and θ .
(b) supx |Ω(x,θ)| is in L1(Sn−1).
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Use the method of rotations to prove that

TΩ ( f )(x) = p.v.
∫

Rn

Ω(x,y/|y|)
|y|n

f (x− y)dy

is bounded on Lp(Rn) for 1 < p < ∞.

5.2.8. Let Ω ∈ L1(Sn−1) have mean value zero. Prove that if TΩ maps Lp(Rn) to
Lq(Rn), then p = q.[
Hint: Use dilations.

]
5.2.9. Prove that for all 1 < p < ∞ there exists a constant Ap > 0 such that for every
complex-valued C 2(R2) function f with compact support we have the bound∥∥∂x1 f

∥∥
Lp +

∥∥∂x2 f
∥∥

Lp ≤ Ap
∥∥∂x1 f + i∂x2 f

∥∥
Lp .

5.2.10. (a) Let ∆ = ∑
n
j=1 ∂ 2

x j
be the usual Laplacian on Rn. Prove that for all 1 <

p < ∞ there exists a constant Ap > 0 such that for all C 2 functions f with compact
support we have the bound ∥∥∂x j ∂xk f

∥∥
Lp ≤ Ap

∥∥∆ f
∥∥

Lp .

(b) Let ∆ m =

m times︷ ︸︸ ︷
∆ ◦ · · · ◦∆ . Show that for any 1 < p < ∞ there exists a Cp > 0 such

that for all f of class C 2m with compact support and all differential monomials ∂ α
x

of order |α|= 2m we have ∥∥∂
α
x f
∥∥

Lp ≤Cp
∥∥∆

m f
∥∥

Lp .

5.2.11. Use the same idea as in Lemma 5.2.5 to show that if f is continuous on
[0,∞), differentiable in (0,∞), and satisfies

lim
N→∞

∫ Na

N

f (u)
u

du = 0

for all a > 0, then

lim
ε→0
N→∞

∫ N

ε

f (at)− f (t)
t

dt = f (0) log
1
a
.

5.2.12. Let Ωo be an odd integrable function on Sn−1 and Ωe an even function on
Sn−1 that satisfies (5.2.24). Let f be a function supported in a ball B in Rn. Prove
that
(a) If | f | log+ | f | is integrable over a ball B, then TΩo( f ) and T (∗∗)

Ωo
( f ) are integrable

over B.
(b) If | f |(log+ | f |)2 is integrable over a ball B, then TΩe( f ) and T (∗∗)

Ωe
( f ) are inte-

grable over B.[
Hint: Use Exercise 1.3.7.

]
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5.2.13. ([324]) Let Ω be integrable on Sn−1 with mean value zero. Use Jensen’s
inequality to show that for some C > 0 and every radial function f ∈ L2(Rn) we
have ∥∥TΩ ( f )

∥∥
L2 ≤C

∥∥ f
∥∥

L2 .

This inequality subsumes that TΩ is well defined on radial L2(Rn) functions.

5.3 The Calderón–Zygmund Decomposition and Singular
Integrals

The behavior of singular integral operators on L1(Rn) is a more subtle issue than
that on Lp for 1 < p < ∞. It turns out that singular integrals are not bounded from
L1 to L1. See Example 5.1.3 and also Exercise 5.2.4. In this section we see that
singular integrals map L1 into the larger space L1,∞. This result strengthens their Lp

boundedness.

5.3.1 The Calderón–Zygmund Decomposition

To make some advances in the theory of singular integrals, we need to introduce
the Calderón–Zygmund decomposition. This is a powerful stopping-time construc-
tion that has many other interesting applications. We have already encountered an
example of a stopping-time argument in Section 2.1.

Recall that a dyadic cube in Rn is the set

[2km1,2k(m1 +1))×·· ·× [2kmn,2k(mn +1)) ,

where k,m1, . . . ,mn ∈Z. Two dyadic cubes are either disjoint or related by inclusion.

Theorem 5.3.1. Let f ∈ L1(Rn) and α > 0. Then there exist functions g and b on
Rn such that

(1) f = g+b.

(2) ‖g‖L1 ≤ ‖ f‖L1 and ‖g‖L∞ ≤ 2nα .

(3) b = ∑ j b j, where each b j is supported in a dyadic cube Q j. Furthermore, the
cubes Qk and Q j are disjoint when j 6= k.

(4)
∫

Q j

b j(x)dx = 0.

(5) ‖b j‖L1 ≤ 2n+1α|Q j|.

(6) ∑ j |Q j| ≤ α−1‖ f‖L1 .


