Remark 5.2.9. It follows from the proof of Theorem 5.2.7 and from Theorems 5.1.7 and 5.1.12 that whenever Ω is an odd function on S^{n-1} , we have

$$\begin{aligned} \|T_{\Omega}\|_{L^{p}\to L^{p}} &\leq \|\Omega\|_{L^{1}} \begin{cases} ap & \text{when } p \geq 2, \\ a(p-1)^{-1} & \text{when } 1$$

for some a > 0 independent of p and the dimension.

5.2.4 Singular Integrals with Even Kernels

Since a general integrable function Ω on \mathbf{S}^{n-1} with mean value zero can be written as a sum of an odd and an even function, it suffices to study singular integral operators T_{Ω} with even kernels. For the rest of this section, fix an integrable even function Ω on \mathbf{S}^{n-1} with mean value zero. The following idea is fundamental in the study of such singular integrals. Proposition 5.1.16 implies that

$$T_{\Omega} = -\sum_{j=1}^{n} R_{j} R_{j} T_{\Omega} \,. \tag{5.2.23}$$

If $R_j T_{\Omega}$ were another singular integral operator of the form T_{Ω_j} for some odd Ω_j , then the boundedness of T_{Ω} would follow from that of T_{Ω_j} via the identity (5.2.23) and Theorem 5.2.7. It turns out that $R_j T_{\Omega}$ does have an odd kernel, but it may not be integrable on \mathbf{S}^{n-1} unless Ω itself possesses an additional amount of integrability. The amount of extra integrability needed is logarithmic, more precisely of this sort:

$$c_{\Omega} = \int_{\mathbf{S}^{n-1}} |\Omega(\theta)| \log(e + |\Omega(\theta)|) d\theta < \infty.$$
 (5.2.24)

Observe that we always have

$$\left\|\boldsymbol{\Omega}\right\|_{L^1} \leq c_{\boldsymbol{\Omega}}.$$

The following theorem is the main result of this section.

Theorem 5.2.10. Let $n \ge 2$ and let Ω be an even integrable function on \mathbf{S}^{n-1} with mean value zero that satisfies (5.2.24). Then the corresponding singular integral T_{Ω} is bounded on $L^{p}(\mathbf{R}^{n})$, $1 , with norm at most a dimensional constant multiple of the quantity <math>\max((p-1)^{-2}, p^{2})(c_{\Omega}+1)$.

If the operator T_{Ω} in Theorem 5.2.10 is weak type (1, 1), then the estimate on the L^p operator norm of T_{Ω} can be improved to $||T_{\Omega}||_{L^p \to L^p} \leq C_n(p-1)^{-1}(c_{\Omega}+1)$ as $p \to 1$. This is indeed the case; see the historical comments at the end of this chapter.

Proof. Let W_{Ω} be the distributional kernel of T_{Ω} . We have that W_{Ω} coincides with the function $\Omega(x/|x|)|x|^{-n}$ on $\mathbb{R}^n \setminus \{0\}$. Using Proposition 5.2.3 and the fact that Ω is an even function, we obtain the formula

$$\widehat{W_{\Omega}}(\xi) = \int_{\mathbf{S}^{n-1}} \Omega(\theta) \log \frac{1}{|\xi \cdot \theta|} \, d\theta \,, \tag{5.2.25}$$

which implies that \widehat{W}_{Ω} is itself an even function. Now, using Exercise 5.2.3 and condition (5.2.24), we conclude that \widehat{W}_{Ω} is a bounded function. Therefore, T_{Ω} is L^2 bounded. To obtain the L^p boundedness of T_{Ω} , we use the idea mentioned earlier involving the Riesz transforms. In view of (5.1.46), we have that

$$T_{\Omega} = -\sum_{j=1}^{n} R_j T_j,$$
 (5.2.26)

where $T_j = R_j T_{\Omega}$. Equality (5.2.26) makes sense as an operator identity on $L^2(\mathbf{R}^n)$, since T_{Ω} and each R_j are well defined and bounded on $L^2(\mathbf{R}^n)$.

The kernel of the operator T_j is the inverse Fourier transform of the distribution $-i\frac{\xi_j}{|\xi|}\widehat{W_{\Omega}}(\xi)$, which we denote by K_j . At this point we know only that K_j is a tempered distribution whose Fourier transform is the function $-i\frac{\xi_j}{|\xi|}\widehat{W_{\Omega}}(\xi)$. Our first goal is to show that K_j coincides with an integrable function on an annulus. To prove this assertion we write

$$W_{\Omega} = W_{\Omega}^0 + W_{\Omega}^1 + W_{\Omega}^{\infty},$$

where W_{Ω}^{0} is a distribution and $W_{\Omega}^{1}, W_{\Omega}^{\infty}$ are functions defined by

$$egin{aligned} &\langle W^0_\Omega, \pmb{\varphi}
angle &= \lim_{arepsilon o 0} \int_{arepsilon < |x| \le rac{1}{2}} rac{\Omega(x/|x|)}{|x|^n} \pmb{\varphi}(x) \, dx, \ &W^1_\Omega(x) \, = rac{\Omega(x/|x|)}{|x|^n} \pmb{\chi}_{rac{1}{2} \le |x| \le 2}, \ &W^\infty_\Omega(x) \, = rac{\Omega(x/|x|)}{|x|^n} \pmb{\chi}_{2 < |x|}. \end{aligned}$$

We now fix a $j \in \{1, 2, ..., n\}$ and we write

$$K_j = K_j^0 + K_j^1 + K_j^\infty,$$

where

$$\begin{split} K_{j}^{0} &= \big(-i\frac{\xi_{j}}{|\xi|}\widehat{W_{\Omega}^{0}}(\xi)\big)^{\vee},\\ K_{j}^{1} &= \big(-i\frac{\xi_{j}}{|\xi|}\widehat{W_{\Omega}^{1}}(\xi)\big)^{\vee},\\ K_{j}^{\infty} &= \big(-i\frac{\xi_{j}}{|\xi|}\widehat{W_{\Omega}^{\infty}}(\xi)\big)^{\vee}. \end{split}$$

Notice that K_i^0 is well defined via Theorem 2.3.21.

Define the annulus

$$A = \{ x \in \mathbf{R}^n : 2/3 < |x| < 3/2 \}.$$

For a smooth function ϕ supported in the annulus 2/3 < |x| < 3/2 we have

$$\begin{split} \left\langle K_{j}^{0}, \phi \right\rangle &= \left\langle (-i\frac{\xi_{j}}{|\xi|}\widehat{W_{\Omega}^{0}}(\xi))^{\vee}, \phi \right\rangle \\ &= \left\langle -i\frac{\xi_{j}}{|\xi|}\widehat{W_{\Omega}^{0}}(\xi), \phi^{\vee}(\xi) \right\rangle \\ &= \left\langle \widehat{W_{\Omega}^{0}}(\xi), -i\frac{\xi_{j}}{|\xi|}\phi^{\vee}(\xi) \right\rangle \\ &= \left\langle W_{\Omega}^{0}, \left(-i\frac{\xi_{j}}{|\xi|}\phi^{\vee}(\xi)\right)^{\wedge} \right\rangle \\ &= -\left\langle W_{\Omega}^{0}, \widehat{R_{j}(\phi)} \right\rangle \\ &= -\lim_{\varepsilon \to 0} \int_{\varepsilon < |y| < 1/2} \frac{\Omega(y/|y|)}{|y|^{n}} R_{j}(\phi)(-y) \, dy \qquad (\Omega \text{ is even}) \\ &= -\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{\varepsilon < |y| < 1/2} \frac{\Omega(y/|y|)}{|y|^{n}} \int_{\mathbb{R}^{n}} \frac{y_{j} - x_{j}}{|y - x|^{n+1}} \phi(x) \, dx \, dy, \end{split}$$

noticing that |y - x| stays away from zero when |y| < 1/2 and x lies in A. It should be noted that the function $\zeta = \left(-i\frac{\xi_j}{|\xi|}\phi^{\vee}(\xi)\right)^{\wedge}$ is not Schwartz, but it is Lipschitz, i.e., it satisfies $|\zeta(x) - \zeta(y)| \le C_{\phi}|x - y|$, and the compactly supported tempered distribution W_{Ω}^0 can be extended to act on such functions. It follows that K_j^0 coincides in *A* with the function inside the absolute value be-

low:

$$\left| \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{\varepsilon < |y| < \frac{1}{2}} \frac{x_j - y_j}{|x - y|^{n+1}} \frac{\Omega(y/|y|)}{|y|^n} \, dy \right|$$
(5.2.27)

$$= \left| \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_{|y| < \frac{1}{2}} \left(\frac{x_j - y_j}{|x - y|^{n+1}} - \frac{x_j}{|x|^{n+1}} \right) \frac{\Omega(y/|y|)}{|y|^n} dy \right|$$

$$\leq \int_{|y| \le \frac{1}{2}} C_n |y| \frac{|\Omega(y/|y|)|}{|y|^n} dy$$

$$= C'_n ||\Omega||_{L^1},$$
(5.2.28)

where we used the fact that $\Omega(y/|y|)|y|^{-n}$ has integral zero over annuli of the form $\varepsilon < |y| < \frac{1}{2}$, the mean value theorem applied to the function $x_j |x|^{-(n+1)}$, and the fact that $|x-y| \ge 1/6$ for x in the annulus A. We conclude that on A, K_i^0 coincides with the bounded function inside the absolute value in (5.2.27).

Likewise, for $x \in A$ we have

$$\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \left| \int_{|y|>2} \frac{x_j - y_j}{|x - y|^{n+1}} \frac{\Omega(y/|y|)}{|y|^n} dy \right| \qquad (5.2.29) \\
\leq \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_{|y|>2} \frac{1}{|x - y|^n} \frac{|\Omega(y/|y|)|}{|y|^n} dy \\
\leq \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_{|y|>2} \frac{4^n}{|y|^{2n}} |\Omega(y/|y|)| dy \\
= C \|\Omega\|_{L^1},$$

from which it follows that on the annulus A, K_j^{∞} coincides with the bounded function inside the absolute value in (5.2.29) or in (5.2.28).

Now observe that condition (5.2.24) gives that the function W_{Ω}^{1} satisfies

$$\begin{split} \int_{|x| \le 2} |W_{\Omega}^{1}(x)| \log(e + |W_{\Omega}^{1}(x)|) dx \\ & \le \int_{1/2}^{2} \int_{\mathbf{S}^{n-1}} \frac{|\Omega(\theta)|}{r^{n}} \log\left[e + 2^{n} |\Omega(\theta)|\right] d\theta r^{n-1} dr \\ & \le (\log 4) \left[n(\log 2) \left\|\Omega\right\|_{L^{1}} + c_{\Omega}\right] \le c'_{n} c_{\Omega} < \infty. \end{split}$$

Since the Riesz transform R_j is countably subadditive and maps L^p to L^p with norm at most $4(p-1)^{-1}$ for $1 , it follows from Exercise 1.3.7 that <math>K_j^1 = R_j(W_{\Omega}^1)$ is integrable over the ball $|x| \le 3/2$ and moreover, it satisfies

$$\int_{A} |K_{j}^{1}(x)| dx \leq C_{n} \left[\int_{|x| \leq 2} |W_{\Omega}^{1}(x)| \log^{+} |W_{\Omega}^{1}(x)| dx + 1 \right] \leq C_{n}' (c_{\Omega} + 1).$$

Furthermore, since $\widehat{K_j}$ is homogeneous of degree zero, K_j is a homogeneous distribution of degree -n (Exercise 2.3.9). This means that for all test functions φ and all $\lambda > 0$ we have

$$\langle K_j, \delta^{\lambda}(\boldsymbol{\varphi}) \rangle = \langle K_j, \boldsymbol{\varphi} \rangle,$$
 (5.2.30)

where $\delta^{\lambda}(\varphi)(x) = \varphi(\lambda x)$. But for $\varphi \in \mathscr{C}_{0}^{\infty}$ supported in the annulus 3/4 < |x| < 4/3 and for λ in (8/9, 9/8) we have that $\delta^{\lambda^{-1}}(\varphi)$ is supported in *A* and thus we can express (5.2.30) as convergent integrals as follows:

$$\int_{\mathbf{R}^n} K_j(x)\varphi(x)\,dx = \int_{\mathbf{R}^n} K_j(x)\varphi(\lambda^{-1}x)\,dx = \int_{\mathbf{R}^n} \lambda^n K_j(\lambda x)\varphi(x)\,dx.$$
(5.2.31)

From this it would be ideal to be able to directly obtain that $K_j(x) = \lambda^n K_j(\lambda x)$ for all 8/9 < |x| < 9/8 and $8/9 < \lambda < 9/8$, in particular when $\lambda = |x|^{-1}$. But unfortunately, we can only deduce that for every $\lambda \in (8/9, 9/8)$, $K_j(x) = \lambda^n K_j(\lambda x)$ holds for all x in the annulus except a set of measure zero that depends on λ . To be able to define the restriction of K_j on \mathbf{S}^{n-1} , we employ a more delicate argument.

For any J subinterval of [8/9, 9/8] we obtain from (5.2.31) that

$$\int_{\mathbf{R}^n} K_j(x) \varphi(x) \, dx = \int_{\mathbf{R}^n} \int_J \lambda^n K_j(\lambda x) \, d\lambda \, \varphi(x) \, dx \,,$$

where integral with the slashed integral denotes the average of a function over the set *J*. Since φ was an arbitrary \mathscr{C}_0^{∞} function supported in the annulus 3/4 < |x| < 4/3, it follows that for every *J* subinterval of [8/9,9/8], there is a null¹ subset E_J of the annulus $A' = \{x : 27/32 < |x| < 32/27\}$ such that

$$K_j(x) = \int_J \lambda^n K_j(\lambda x) d\lambda$$
 (5.2.32)

for all $x \in A' \setminus E_J$.

Let $J_0 = [\sqrt{8/9}, \sqrt{9/8}]$. We claim that there is a null subset *E* of *A'* such that for all $x \in A' \setminus E$ we have

$$\int_{I_0} \lambda^n K_j(\lambda x) d\lambda = \int_{I_0} \lambda^n K_j(\lambda x) d\lambda$$
(5.2.33)

for every *r* in J_0 . Indeed, flet *E* be the union of $f^0E_{rJ_0}$ over all *r* in $J_0 \cap \mathbf{Q}$. Then in view of (5.2.32), identity (5.2.33) holds for $x \in A' \setminus E$ and $J_0 \cap \mathbf{Q}$. But for a fixed *x* in $A' \setminus E$, the function of *r* on the right hand side of (5.2.33) is constant on the rationals and is also continuous (in *r*), hence it must be constant for all $r \in J_0$. Thus the claim follows since both sides of (5.2.33) are equal to (5.2.32).

Writing $x = \delta \theta$, where $27/32 < \delta < 32/27$ and $\theta \in S^{n-1}$, it follows by Fubini's theorem that there is a $\delta \in (27/32, 32/27)$ (in fact almost all δ have this property) such that

$$\oint_{J_0} \lambda^n K_j(\lambda \delta \theta) d\lambda = \oint_{rJ_0} \lambda^n K_j(\lambda \delta \theta) d\lambda$$
(5.2.34)

for almost all $\theta \in \mathbf{S}^{n-1}$ and all $r \in J_0$. We fix such a δ , which we denote δ_0 . We now define a function Ω_i on \mathbf{S}^{n-1} by setting

$$\Omega_j(\theta) = \int_{J_0} \delta_0^n \lambda^n K_j(\lambda \delta_0 \theta) d\lambda = \int_{rJ_0} \delta_0^n \lambda^n K_j(\lambda \delta_0 \theta) d\lambda$$

for all $r \in J_0$. The function Ω_j is defined almost everywhere and is integrable over \mathbf{S}^{n-1} , since K_j is integrable over the annulus A.

Let $e_1 = (1, 0, ..., 0)$. Let Ψ be a $\mathscr{C}_0^{\infty}(\mathbb{R}^n)$ nonzero, nonnegative, radial, and supported in the annulus $32/(27\sqrt{2}) < |x| < 27\sqrt{2}/32$ around \mathbb{S}^{n-1} . We start with

$$\Omega_j(\theta) = \oint_{r^{-1}J_0} \delta_0^n \lambda^n K_j(\lambda \, \delta_0 \theta) \, d\lambda = \oint_{J_0} \delta_0^n r^n \lambda^n K_j(r \lambda \, \delta_0 \theta) \, d\lambda \,,$$

which holds for all $r \in J_0$, we multiply by $\Psi(re_1)$, and we integrate over \mathbf{S}^{n-1} and over $(0,\infty)$ with respect to the measure dr/r. We obtain

¹ here we are making use of the following version of du Bois-Reymond's lemma: if *U* is an open subset of \mathbf{R}^n and *g* is an integrable function on *U* such that $\int_U g(x)\psi(x)dx = 0$ for all ψ smooth functions with compact support contained in *U*, then g = 0 a.e. on *U*.

$$\begin{split} \int_{0}^{\infty} \Psi(re_{1}) \frac{dr}{r} \int_{\mathbf{S}^{n-1}} \Omega_{j}(\theta) d\theta &= \int_{J_{0}} \int_{0}^{\infty} \int_{\mathbf{S}^{n-1}} \delta_{0}^{n} \lambda^{n} K_{j}(\lambda \delta_{0} r\theta) \Psi(re_{1}) r^{n} d\theta \frac{dr}{r} d\lambda \\ &= \int_{J_{0}} \int_{\mathbf{R}^{n}} \delta_{0}^{n} \lambda^{n} K_{j}(\lambda \delta_{0} x) \Psi(x) dx d\lambda \\ &= \int_{J_{0}} \int_{\mathbf{R}^{n}} K_{j}(x) \Psi((\lambda \delta_{0})^{-1} x) dx d\lambda \\ &= \int_{J_{0}} \langle K_{j}, \Psi \rangle d\lambda \,, \\ &= \langle K_{j}, \Psi \rangle \end{split}$$

in view of the homogeneity of K_j . But, as $\widehat{\Psi} = \Psi^{\vee}$, for some constant c'_{Ψ} we have

$$\left\langle K_{j},\Psi\right\rangle = \left\langle \widehat{K_{j}},\widehat{\Psi}^{\vee}\right\rangle = \int_{\mathbf{R}^{n}} \frac{-i\xi_{j}}{|\xi|} \widehat{W_{\Omega}}(\xi)\widehat{\Psi}(\xi) d\xi = c'_{\Psi} \int_{\mathbf{S}^{n-1}} \frac{-i\theta_{j}}{|\theta|} \widehat{W_{\Omega}}(\theta) d\theta = 0,$$

since by (5.2.25), $\frac{-i\xi_j}{|\xi|}\widehat{W_{\Omega}}(\xi)$ is an odd function. We conclude that Ω_j has mean value zero over \mathbf{S}^{n-1} .

Thus $\Omega_j \in L^1(\mathbf{S}^{n-1})$ has mean value zero and the distribution W_{Ω_j} is well defined. We claim that

$$K_j = W_{\Omega_j} \,. \tag{5.2.35}$$

To establish (5.2.35), we show first that $\langle K_j, \varphi \rangle = \langle W_{\Omega_j}, \varphi \rangle$ whenever φ is supported in the annulus 8/9 < |x| < 9/8. Using (5.2.32) we have

$$\begin{split} \int_{\mathbf{R}^n} K_j(x) \varphi(x) \, dx &= \int_{\mathbf{R}^n} \int_{J_0} K_j(\delta_0 \lambda x) \delta_0^n \lambda^n d\lambda \, \varphi(x) \, dx \\ &= \int_0^\infty \int_{\mathbf{S}^{n-1}} \int_{J_0} K_j(\delta_0 \lambda r \theta) \delta_0^n \lambda^n r^n \, d\lambda \, \varphi(r\theta) \, d\theta \frac{dr}{r} \\ &= \int_0^\infty \int_{\mathbf{S}^{n-1}} \int_{rJ_0} K_j(\delta_0 \lambda' \theta) \delta_0^n (\lambda')^n d\lambda' \, \varphi(r\theta) \, d\theta \frac{dr}{r} \\ &= \int_0^\infty \int_{\mathbf{S}^{n-1}} \Omega_j(\theta) \varphi(r\theta) \, d\theta \frac{dr}{r} \\ &= \langle W_{\Omega_j}, \varphi \rangle, \end{split}$$

having used (5.2.34) in the second to last equality.

Given a general \mathscr{C}_0^{∞} function φ whose support is contained in an annulus of the form $M^{-1} < |x| < M$, for some M > 0, via a smooth partition of unity, we write φ as a finite sum of smooth functions φ_k whose supports are contained in annuli of the form 8s/9 < |x| < 9s/8 for some s > 0. These annuli can be brought inside the annulus 8/9 < |x| < 9/8 by a dilation. Since both K_j and W_{Ω_j} are homogeneous distributions of degree -n and agree on the annulus 8/9 < |x| < 9/8 they must agree on annuli 8s/9 < |x| < 9s/8. Consequently, $\langle K_j, \varphi \rangle = \langle W_{\Omega_j}, \varphi \rangle$ for all $\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R}^n \setminus \{0\})$. Therefore, $K_j - W_{\Omega_j}$ is supported at the origin, and since it is homogeneous of degree -n, it must be equal to $b\delta_0$, a constant multiple of the Dirac mass. But $\widehat{K_j}$ is an

odd function and hence K_j is also odd. It follows that W_{Ω_j} is an odd function on $\mathbf{R}^n \setminus \{0\}$, which implies that Ω_j is an odd function. We say that $u \in \mathscr{S}'(\mathbf{R}^n)$ is odd if $\tilde{u} = -u$, where \tilde{u} is defined by $\langle \tilde{u}, \psi \rangle = \langle u, \tilde{\psi} \rangle$ for all $\psi \in \mathscr{S}(\mathbf{R}^n)$ and $\tilde{\psi}(x) = \psi(-x)$. We have that $K_j - W_{\Omega_j}$ is an odd distribution, and thus $b\delta_0$ must be an odd distribution. But if $b\delta_0$ is odd, then b = 0. We conclude that for each *j* there exists an odd integrable function Ω_j on \mathbf{S}^{n-1} with $\|\Omega_j\|_{L^1}$ controlled by a constant multiple of c_{Ω} such that (5.2.35) holds.

Then we use (5.2.26) and (5.2.35) to write

$$T_{\Omega} = -\sum_{j=1}^n R_j T_{\Omega_j},$$

and appealing to the boundedness of each T_{Ω_j} (Theorem 5.2.7) and to that of the Riesz transforms, we obtain the required L^p boundedness for T_{Ω} .

We note that Theorem 5.2.10 holds for all $\Omega \in L^1(\mathbf{S}^{n-1})$ that satisfy (5.2.24), not necessarily even Ω . Simply write $\Omega = \Omega_e + \Omega_o$, where Ω_e is even and Ω_o is odd, and check that condition (5.2.24) holds for Ω_e .

5.2.5 Maximal Singular Integrals with Even Kernels

We have the corresponding theorem for maximal singular integrals.

Theorem 5.2.11. Let $n \ge 2$ and let Ω be an even integrable function on \mathbf{S}^{n-1} with mean value zero that satisfies (5.2.24). Then the corresponding maximal singular integral $T_{\Omega}^{(**)}$, defined in (5.2.4), is bounded on $L^p(\mathbf{R}^n)$ for $1 with norm at most a dimensional constant multiple of <math>\max(p^2, (p-1)^{-3})(c_{\Omega}+1)$.

Proof. For $f \in L^1_{loc}(\mathbf{R}^n)$, we define the maximal function of f in the direction θ by setting

$$M_{\theta}(f)(x) = \sup_{a>0} \frac{1}{2a} \int_{|r| \le a} |f(x - r\theta)| \, dr \,. \tag{5.2.36}$$

In view of Exercise 5.2.5 we have that M_{θ} is bounded on $L^{p}(\mathbb{R}^{n})$ with norm at most $3 p (p-1)^{-1}$.

Fix Φ a smooth radial function such that $\Phi(x) = 0$ for $|x| \le 1/4$, $\Phi(x) = 1$ for $|x| \ge 3/4$, and $0 \le \Phi(x) \le 1$ for all x in \mathbb{R}^n . For $f \in L^p(\mathbb{R}^n)$ and $0 < \varepsilon < N < \infty$ we introduce the smoothly truncated singular integral

$$\widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)(x) = \int_{\mathbf{R}^n} \frac{\Omega\left(\frac{y}{|y|}\right)}{|y|^n} \left(\Phi\left(\frac{y}{\varepsilon}\right) - \Phi\left(\frac{y}{N}\right) \right) f(x-y) \, dy$$

and the corresponding maximal singular integral operator

$$\widetilde{T}_{\Omega}^{(**)}(f) = \sup_{0 < N < \infty} \sup_{0 < \varepsilon < N} |\widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)|.$$
(5.2.37)

It suffices to work with $\widetilde{T}_{\Omega}^{(**)}$ instead of $T_{\Omega}^{(**)}$ in view of the following argument.

For f in $L^p(\mathbf{R}^n)$ (for some 1), we have

$$\begin{split} |\widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)(x)| &- |T_{\Omega}^{(\varepsilon,N)}(f)(x)| \\ &\leq \left|\widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)(x) - T_{\Omega}^{(\varepsilon,N)}(f)(x)\right| \\ &= \left| \left[\int_{|y| \geq \frac{\varepsilon}{4}} \frac{\Omega\left(\frac{y}{|y|}\right)}{|y|^n} \Phi\left(\frac{y}{\varepsilon}\right) f(x-y) dy - \int_{|y| \geq \frac{N}{4}} \frac{\Omega\left(\frac{y}{|y|}\right)}{|y|^n} \Phi\left(\frac{y}{N}\right) f(x-y) dy \right] \right. \\ &- \left[\int_{|y| \geq \varepsilon} \frac{|\Omega\left(\frac{y}{|y|}\right)|}{|y|^n} \Phi\left(\frac{y}{\varepsilon}\right) f(x-y) dy - \int_{|y| \geq N} \frac{|\Omega\left(\frac{y}{|y|}\right)|}{|y|^n} \Phi\left(\frac{y}{N}\right) f(x-y) dy \right] \right| \\ &\leq \int_{\mathbf{S}^{n-1}} |\Omega(\theta)| \left[\frac{4}{\varepsilon} \int_{\frac{\varepsilon}{4}}^{\varepsilon} |f(x-r\theta)| dr + \frac{4}{N} \int_{\frac{N}{4}}^{N} |f(x-r\theta)| dr \right] d\theta \\ &\leq 16 \int_{\mathbf{S}^{n-1}} |\Omega(\theta)| M_{\theta}(f)(x) d\theta \,. \end{split}$$

Taking the supremum over $N > \varepsilon > 0$ and using the result of Exercise 5.2.5 we conclude that

$$\|\widetilde{T}_{\Omega}^{(**)}(f) - T_{\Omega}^{(**)}(f)\|_{L^{p}} \leq 100 \|\Omega\|_{L^{1}} \max(1, (p-1)^{-1}) \|f\|_{L^{p}}$$

This implies that it suffices to obtain the required L^p bound for the smoothly truncated maximal singular integral operator $\tilde{T}_{\Omega}^{(**)}$.

In proving the required estimate, we may assume that the even function Ω is bounded. For, if we know that for Ω even and bounded we had

$$\|\widetilde{T}_{\Omega}^{(**)}\|_{L^{p}\to L^{p}} \leq C_{n}\max(p^{2},(p-1)^{-3})(c_{\Omega}+1)$$

then given a general even function Ω in $L\log L(\mathbf{S}^{n-1})$ we set $\Omega^m = \Omega \chi_{|\Omega| \le m} - \kappa^m$, where κ^m are chosen so that $\int_{\mathbf{S}^{n-1}} \Omega^m d\sigma = 0$ for all $m \ge 1$. Then for all $x \in \mathbf{R}^n$

$$\widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)(x) \leq \liminf_{m \to \infty} \widetilde{T}_{\Omega^m}^{(\varepsilon,N)}(f)(x) \leq \liminf_{m \to \infty} \widetilde{T}_{\Omega^m}^{(**)}(f)(x)$$

whenever $f \in L^p \cap L^{\infty}$. Taking the supremum over $\varepsilon, N > 0$ and applying Fatou's lemma and a density argument (passing from $L^p \cap L^{\infty}$ to L^p) we obtain

$$\|\widetilde{T}_{\Omega}^{(**)}\|_{L^{p}\to L^{p}} \leq \liminf_{m\to\infty} \|\widetilde{T}_{\Omega^{m}}^{(**)}\|_{L^{p}\to L^{p}} \leq C_{n}C(p)\liminf_{m\to\infty}(c_{\Omega^{m}}+1) = C_{n}C(p)(c_{\Omega}+1),$$

where $C(p) = \max(p^2, (p-1)^{-3})$.

So we fix a bounded function Ω on \mathbf{S}^{n-1} with integral zero. Let K_j , Ω_j , and T_j be as in the previous theorem, and let F_j be the Riesz transform of the function $\Omega(x/|x|)\Phi(x)|x|^{-n}$. Let $f \in L^p(\mathbf{R}^n)$. A calculation yields the identity

$$\begin{split} \widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)(x) &= \int_{\mathbf{R}^n} \left[\frac{1}{\varepsilon^n} \frac{\Omega(\frac{y}{\varepsilon}/|\frac{y}{\varepsilon}|)}{|\frac{y}{\varepsilon}|^n} \boldsymbol{\Phi}(\frac{y}{\varepsilon}) - \frac{1}{N^n} \frac{\Omega(\frac{y}{N}/|\frac{y}{N}|)}{|\frac{y}{N}|^n} \boldsymbol{\Phi}(\frac{y}{N}) \right] f(x-y) \, dy \\ &= -\left(\sum_{j=1}^n \left[\frac{1}{\varepsilon^n} F_j\left(\frac{\cdot}{\varepsilon}\right) - \frac{1}{N^n} F_j\left(\frac{\cdot}{N}\right) \right] * R_j(f) \right) (x) \,, \end{split}$$

where in the last step we used Proposition 5.1.16. Therefore we may write

$$-\widetilde{T}_{\Omega}^{(\varepsilon,N)}(f)(x) = \sum_{j=1}^{n} \int_{\mathbf{R}^{n}} \left[\frac{1}{\varepsilon^{n}} F_{j}\left(\frac{x-y}{\varepsilon}\right) - \frac{1}{N^{n}} F_{j}\left(\frac{x-y}{N}\right) \right] R_{j}(f)(y) \, dy$$

$$= A_{1}^{(\varepsilon,N)}(f)(x) + A_{2}^{(\varepsilon,N)}(f)(x) + A_{3}^{(\varepsilon,N)}(f)(x) \,, \qquad (5.2.38)$$

where

$$\begin{split} A_1^{(\varepsilon,N)}(f)(x) &= \sum_{j=1}^n \frac{1}{\varepsilon^n} \int_{|x-y| \le \varepsilon} F_j\left(\frac{x-y}{\varepsilon}\right) R_j(f)(y) \, dy \\ &- \sum_{j=1}^n \frac{1}{N^n} \int_{|x-y| \le N} F_j\left(\frac{x-y}{N}\right) R_j(f)(y) \, dy, \\ A_2^{(\varepsilon,N)}(f)(x) &= \sum_{j=1}^n \int_{\mathbf{R}^n} \left[\frac{1}{\varepsilon^n} \chi_{|x-y| > \varepsilon} \left\{ F_j\left(\frac{x-y}{\varepsilon}\right) - K_j\left(\frac{x-y}{\varepsilon}\right) \right\} \\ &- \frac{1}{N^n} \chi_{|x-y| > N} \left\{ F_j\left(\frac{x-y}{N}\right) - K_j\left(\frac{x-y}{N}\right) \right\} \right] R_j(f)(y) \, dy, \\ A_3^{(\varepsilon,N)}(f)(x) &= \sum_{j=1}^n \int_{\mathbf{R}^n} \left[\frac{1}{\varepsilon^n} \chi_{|x-y| > \varepsilon} K_j\left(\frac{x-y}{\varepsilon}\right) - \frac{1}{N^n} \chi_{|x-y| > N} K_j\left(\frac{x-y}{N}\right) \right] R_j(f)(y) \, dy. \end{split}$$

It follows from the definitions of F_j and K_j that

$$F_{j}(z) - K_{j}(z) = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{\varepsilon \le |y|} \frac{\Omega(y/|y|)}{|y|^{n}} (\Phi(y) - 1) \frac{z_{j} - y_{j}}{|z - y|^{n+1}} dy$$
$$= \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_{|y| \le \frac{3}{4}} \frac{\Omega(y/|y|)}{|y|^{n}} (\Phi(y) - 1) \left\{ \frac{z_{j} - y_{j}}{|z - y|^{n+1}} - \frac{z_{j}}{|z|^{n+1}} \right\} dy$$

whenever $|z| \ge 1$. But using the mean value theorem, the last expression is easily seen to be bounded by

$$C_n \int_{|y| \le \frac{3}{4}} \frac{|\Omega(y/|y|)|}{|y|^n} \frac{|y|}{|z|^{n+1}} \, dy = C'_n \|\Omega\|_{L^1} |z|^{-(n+1)} \, ,$$

whenever $|z| \ge 1$. Using this estimate, we obtain that the *j*th term in $A_2^{(\varepsilon,N)}(f)(x)$ is bounded by

$$C_n \frac{\|\boldsymbol{\Omega}\|_{L^1}}{\varepsilon^n} \int_{|x-y|>\varepsilon} \frac{|R_j(f)(y)| \, dy}{(|x-y|/\varepsilon)^{n+1}} \leq C_n \frac{2\|\boldsymbol{\Omega}\|_{L^1}}{2^{-n}\varepsilon^n} \int_{\mathbf{R}^n} \frac{|R_j(f)(y)| \, dy}{\left(1+\frac{|x-y|}{\varepsilon}\right)^{n+1}}.$$

It follows that for functions f in L^p we have

$$\sup_{0<\varepsilon< N<\infty} |A_2^{(\varepsilon,N)}(f)| \leq C_n \|\Omega\|_{L^1} M(R_j(f)),$$

in view of Theorem 2.1.10. (*M* here is the Hardy–Littlewood maximal operator.) By Theorem 2.1.6, *M* maps $L^p(\mathbf{R}^n)$ to itself with norm bounded by a dimensional constant multiple of max $(1, (p-1)^{-1})$. Since by Remark 5.2.9 the norm $||R_j||_{L^p \to L^p}$ is controlled by a dimensional constant multiple of max $(p, (p-1)^{-1})$, it follows that

$$\left\| \sup_{0 < \varepsilon < N < \infty} |A_2^{(\varepsilon, N)}(f)| \right\|_{L^p} \le C_n \|\Omega\|_{L^1} \max(p, (p-1)^{-2}) \|f\|_{L^p}.$$
(5.2.39)

Next, recall that in the proof of Theorem 5.2.10 we showed that

$$K_j(x) = \frac{\Omega_j(x/|x|)}{|x|^n},$$

where Ω_i are integrable functions on \mathbf{S}^{n-1} that satisfy

$$\|\Omega_j\|_{L^1} \le C_n (c_{\Omega} + 1).$$
 (5.2.40)

Consequently, for functions f in $L^p(\mathbf{R}^n)$ we have

$$\sup_{0<\varepsilon< N<\infty} |A_3^{(\varepsilon,N)}(f)| \leq 2\sum_{j=1}^n T_{\Omega_j}^{(**)}(R_j(f))\,,$$

and by Remark 5.2.9 this last expression has L^p norm at most a dimensional constant multiple of $\|\Omega_j\|_{L^1} \max(p, (p-1)^{-2}) \|R_j(f)\|_{L^p}$. It follows that

$$\left\| \sup_{0 < \varepsilon < N < \infty} |A_3^{(\varepsilon, N)}(f)| \right\|_{L^p} \le C_n \max(p^2, (p-1)^{-3})(c_{\Omega}+1) \left\| f \right\|_{L^p}.$$
 (5.2.41)

Finally, we turn our attention to the term $A_1^{(\varepsilon,N)}(f)$. To prove the required estimate, we first show that there exist nonnegative homogeneous of degree zero functions G_i on \mathbb{R}^n that satisfy

$$|F_j(x)| \le G_j(x)$$
 when $|x| \le 1$ (5.2.42)

and

$$\int_{\mathbf{S}^{n-1}} |G_j(\theta)| \, d\theta \le C_n c_{\Omega} \,. \tag{5.2.43}$$

To prove (5.2.42), first note that if $|x| \le 1/8$, then

$$\begin{aligned} |F_{j}(x)| &= \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \left| \int_{\mathbf{R}^{n}} \frac{\Omega(y/|y|)}{|y|^{n}} \Phi(y) \frac{x_{j} - y_{j}}{|x - y|^{n+1}} dy \right| \\ &\leq C_{n} \int_{|y| \geq \frac{1}{4}} \frac{|\Omega(y/|y|)|}{|y|^{2n}} dy \\ &\leq C_{n} \left\| \Omega \right\|_{L^{1}}. \end{aligned}$$

We now fix an x satisfying $1/8 \le |x| \le 1$ and we write

$$\begin{split} |F_{j}(x)| &\leq \Phi(x)|K_{j}(x)| + |F_{j}(x) - \Phi(x)K_{j}(x)| \\ &\leq |K_{j}(x)| + \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \bigg| \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} \frac{x_{j} - y_{j}}{|x - y|^{n+1}} \big(\Phi(y) - \Phi(x) \big) \frac{\Omega(y/|y|)}{|y|^{n}} dy \\ &= |K_{j}(x)| + \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \big(P_{1}(x) + P_{2}(x) + P_{3}(x) \big) \,, \end{split}$$

where

$$P_{1}(x) = \left| \int_{|y| \leq \frac{1}{16}} \left(\frac{x_{j} - y_{j}}{|x - y|^{n+1}} - \frac{x_{j}}{|x|^{n+1}} \right) \left(\Phi(y) - \Phi(x) \right) \frac{\Omega(y/|y|)}{|y|^{n}} dy \right|,$$

$$P_{2}(x) = \left| \int_{\frac{1}{16} \leq |y| \leq 2} \frac{x_{j} - y_{j}}{|x - y|^{n+1}} \left(\Phi(y) - \Phi(x) \right) \frac{\Omega(y/|y|)}{|y|^{n}} dy \right|,$$

$$P_{3}(x) = \left| \int_{|y| \geq 2} \frac{x_{j} - y_{j}}{|x - y|^{n+1}} \left(\Phi(y) - \Phi(x) \right) \frac{\Omega(y/|y|)}{|y|^{n}} dy \right|.$$

But since $1/8 \le |x| \le 1$, we see that

$$P_1(x) \le C_n \int_{|y| \le \frac{1}{16}} \frac{|y|}{|x|^{n+1}} \frac{|\Omega(y/|y|)|}{|y|^n} \, dy \le C'_n \left\| \Omega \right\|_{L^1}$$

and that

$$P_3(x) \leq C_n \int_{|y|\geq 2} \frac{|\Omega(y/|y|)|}{|y|^{2n}} dy \leq C'_n \left\| \Omega \right\|_{L^1}.$$

For $P_2(x)$ we use the estimate $|\Phi(y) - \Phi(x)| \le C|x - y|$ to obtain

$$\begin{split} P_{2}(x) &\leq \int_{\frac{1}{16} \leq |y| \leq 2} \frac{C}{|x - y|^{n - 1}} \frac{|\Omega(y/|y|)|}{|y|^{n}} \, dy \\ &\leq 4C \int_{\frac{1}{16} \leq |y| \leq 2} \frac{|\Omega(y/|y|)|}{|x - y|^{n - 1}|y|^{n - \frac{1}{2}}} \, dy \\ &\leq 4C \int_{\mathbf{R}^{n}} \frac{|\Omega(y/|y|)|}{|x - y|^{n - 1}|y|^{n - \frac{1}{2}}} \, dy \, . \end{split}$$

Recall that $K_j(x) = \Omega_j(x/|x|)|x|^{-n}$. We now set

$$G_{j}(x) = C_{n} \left(\left\| \Omega \right\|_{L^{1}} + \left| \Omega_{j} \left(\frac{x}{|x|} \right) \right| + |x|^{n-\frac{3}{2}} \int_{\mathbf{R}^{n}} \frac{|\Omega(y/|y|)| \, dy}{|x-y|^{n-1}|y|^{n-\frac{1}{2}}} \right)$$
(5.2.44)

and we observe that G_j is a homogeneous of degree zero function, it satisfies (5.2.42), and it is integrable over the annulus $\frac{1}{2} \le |x| \le 2$. To verify the last assertion, we split up the double integral

$$I = \int_{\frac{1}{2} \le |x| \le 2} \int_{\mathbf{R}^n} \frac{|\Omega(y/|y|)| \, dy}{|x-y|^{n-1}|y|^{n-\frac{1}{2}}} \, dx$$

into the pieces $1/4 \le |y| \le 4$, |y| > 4, and |y| < 1/4. The part of *I* where $1/4 \le |y| \le 4$ is pointwise bounded by a constant multiple of

$$\int\limits_{\frac{1}{4} \le |y| \le 4} \left| \Omega\left(\frac{y}{|y|}\right) \right| \int\limits_{\frac{1}{2} \le |x| \le 2} \frac{dx}{|y-x|^{n-1}} dy \le \int\limits_{\frac{1}{4} \le |y| \le 4} \left| \Omega\left(\frac{y}{|y|}\right) \right| \int\limits_{|x-y| \le 6} \frac{dx}{|y-x|^{n-1}} dy,$$

which is pointwise controlled by a constant multiple of $\|\Omega\|_{L^1}$. In the part of *I* where |y| > 4 we use that $|x - y|^{-n+1} \le (|y|/2)^{-n+1}$ to obtain rapid decay in *y* and hence a bound by a constant multiple of $\|\Omega\|_{L^1}$. Finally, in the part of *I* where |y| < 1/4 we use that $|x - y|^{-n+1} \le (1/4)^{-n+1}$, and then we also obtain a similar bound. It follows from (5.2.44) and (5.2.40) that

$$\int_{\frac{1}{2} \le |x| \le 2} |G_j(x)| \, dx \le C_n \big(\|\Omega\|_{L^1} + \|\Omega_j\|_{L^1} + \|\Omega\|_{L^1} \big) \le C_n \, c_{\Omega}.$$

Since G_i is homogeneous of degree zero, we deduce (5.2.43).

To complete the proof, we argue as follows:

$$\begin{split} \sup_{0<\varepsilon< N<\infty} &|A_1^{(\varepsilon,N)}(f)(x)| \\ &\leq 2\sup_{\varepsilon>0} \sum_{j=1}^n \frac{1}{\varepsilon^n} \int_{|z|\le \varepsilon} |F_j\left(\frac{z}{\varepsilon}\right)| |R_j(f)(x-z)| dz \\ &\leq 2\sup_{\varepsilon>0} \sum_{j=1}^n \frac{1}{\varepsilon^n} \int_{r=0}^\varepsilon \int_{\mathbf{S}^{n-1}} \left|F_j\left(\frac{r\theta}{\varepsilon}\right)\right| |R_j(f)(x-r\theta)| r^{n-1} d\theta dr \\ &\leq 2\sum_{j=1}^n \int_{\mathbf{S}^{n-1}} |G_j(\theta)| \left\{ \sup_{\varepsilon>0} \frac{1}{\varepsilon^n} \int_{r=0}^\varepsilon |R_j(f)(x-r\theta)| r^{n-1} dr \right\} d\theta \\ &\leq 4\sum_{j=1}^n \int_{\mathbf{S}^{n-1}} |G_j(\theta)| M_\theta(R_j(f))(x) d\theta \,. \end{split}$$

Using (5.2.43) together with the L^p boundedness of the Riesz transforms and of M_{θ} we obtain

$$\left\| \sup_{0 < \varepsilon < N < \infty} |A_1^{(\varepsilon,N)}(f)| \right\|_{L^p} \le C_n \max(p^2, (p-1)^{-3})(c_{\Omega}+1) \left\| f \right\|_{L^p}.$$
(5.2.45)

Combining (5.2.45), (5.2.39), and (5.2.41), we obtain the required conclusion.

The following corollary is a consequence of Theorem 5.2.11.

Corollary 5.2.12. Let $n \ge 2$ and Ω be as in Theorem 5.2.11. Then for 1 and <math>f in $L^p(\mathbf{R}^n)$ the functions $T_{\Omega}^{(\varepsilon,N)}(f)$ converge to $T_{\Omega}(f)$ in L^p and almost everywhere as $\varepsilon \to 0$ and $N \to \infty$.

Proof. The a.e. convergence is a consequence of Theorem 2.1.14. The L^p convergence is a consequence of the Lebesgue dominated convergence theorem since for $f \in L^p(\mathbf{R}^n)$ we have that $|T_{\Omega}^{(\varepsilon,N)}(f)| \leq T_{\Omega}^{(**)}(f)$ and $T_{\Omega}^{(**)}(f)$ is in $L^p(\mathbf{R}^n)$. \Box

Exercises

5.2.1. Show that the directional Hilbert transform \mathcal{H}_{θ} is given by convolution with the distribution w_{θ} in $\mathcal{S}'(\mathbf{R}^n)$ defined by

$$\langle w_{\theta}, \varphi \rangle = \frac{1}{\pi} \text{ p.v.} \int_{-\infty}^{+\infty} \frac{\varphi(t\theta)}{t} dt.$$

Compute the Fourier transform of w_{θ} and prove that \mathscr{H}_{θ} maps $L^{1}(\mathbb{R}^{n})$ to $L^{1,\infty}(\mathbb{R}^{n})$. [*Hint:* Use that *H* maps $L^{1}(\mathbb{R})$ to $L^{1,\infty}(\mathbb{R})$, which follows from Theorem 5.3.3.]

5.2.2. Extend the definitions of W_{Ω} and T_{Ω} to $\Omega = d\mu$ a finite signed Borel measure on \mathbf{S}^{n-1} with mean value zero. Compute the Fourier transform of $W_{d\mu}$ and find a necessary and sufficient condition on measures $d\mu$ so that $T_{d\mu}$ is L^2 bounded. Notice that the directional Hilbert transform \mathscr{H}_{θ} is a special case of such an operator $T_{d\mu}$.

5.2.3. Use the inequality $AB \leq A \log A + e^B$ for $A \geq 1$ and B > 0 to prove that if Ω satisfies (5.2.24) then it must satisfy (5.2.16). Conclude that if $|\Omega| \log^+ |\Omega|$ is in $L^1(\mathbf{S}^{n-1})$, then T_{Ω} is L^2 bounded.

[*Hint:* Use that $\int_{\mathbf{S}^{n-1}} |\boldsymbol{\xi} \cdot \boldsymbol{\theta}|^{-\alpha} d\boldsymbol{\theta}$ converges when $\alpha < 1$. See Appendix D.3.]

5.2.4. Let Ω be a nonzero integrable function on \mathbf{S}^{n-1} with mean value zero. Let f be integrable over \mathbf{R}^n with nonzero integral. Prove that $T_{\Omega}(f)$ is not in $L^1(\mathbf{R}^n)$. [*Hint:* Show that $T_{\Omega}(f)$ cannot be continuous at zero.]

5.2.5. Let $\theta \in \mathbf{S}^{n-1}$. Use an identity similar to (5.2.18) to show that the maximal operators

$$\sup_{a>0}\frac{1}{a}\int_0^a |f(x-r\theta)|\,dr\,,\qquad \sup_{a>0}\frac{1}{2a}\int_{-a}^{+a}|f(x-r\theta)|\,dr$$

are $L^p(\mathbf{R}^n)$ bounded for $1 with norm at most <math>3 p (p-1)^{-1}$.

5.2.6. For $\Omega \in L^1(\mathbf{S}^{n-1})$ and f locally integrable on \mathbf{R}^n , define

$$M_{\Omega}(f)(x) = \sup_{R>0} \frac{1}{\nu_n R^n} \int_{|y| \le R} |\Omega(y/|y|)| |f(x-y)| \, dy.$$

Apply the method of rotations to prove that M_{Ω} maps $L^{p}(\mathbf{R}^{n})$ to itself for 1 .

5.2.7. Let $\Omega(x, \theta)$ be a function on $\mathbb{R}^n \times \mathbb{S}^{n-1}$ satisfying (a) $\Omega(x, -\theta) = -\Omega(x, \theta)$ for all x and θ . (b) $\sup_x |\Omega(x, \theta)|$ is in $L^1(\mathbb{S}^{n-1})$.

Use the method of rotations to prove that

$$T_{\Omega}(f)(x) = \text{p.v.} \int_{\mathbf{R}^n} \frac{\Omega(x, y/|y|)}{|y|^n} f(x-y) \, dy$$

is bounded on $L^p(\mathbf{R}^n)$ for 1 .

5.2.8. Let $\Omega \in L^1(\mathbf{S}^{n-1})$ have mean value zero. Prove that if T_Ω maps $L^p(\mathbf{R}^n)$ to $L^q(\mathbf{R}^n)$, then p = q. [*Hint:* Use dilations.]

5.2.9. Prove that for all $1 there exists a constant <math>A_p > 0$ such that for every complex-valued $\mathscr{C}^2(\mathbf{R}^2)$ function *f* with compact support we have the bound

$$\left|\partial_{x_1}f\right|_{L^p} + \left\|\partial_{x_2}f\right\|_{L^p} \leq A_p \left\|\partial_{x_1}f + i\partial_{x_2}f\right\|_{L^p}.$$

5.2.10. (a) Let $\Delta = \sum_{j=1}^{n} \partial_{x_j}^2$ be the usual Laplacian on \mathbb{R}^n . Prove that for all $1 there exists a constant <math>A_p > 0$ such that for all \mathscr{C}^2 functions f with compact support we have the bound

$$\left\|\partial_{x_j}\partial_{x_k}f\right\|_{L^p} \leq A_p \left\|\Delta f\right\|_{L^p}.$$

m times

(b) Let $\Delta^m = \Delta \circ \cdots \circ \Delta$. Show that for any $1 there exists a <math>C_p > 0$ such that for all f of class \mathscr{C}^{2m} with compact support and all differential monomials ∂_x^{α} of order $|\alpha| = 2m$ we have

$$\left\|\partial_x^{\alpha}f\right\|_{L^p} \leq C_p \left\|\Delta^m f\right\|_{L^p}.$$

5.2.11. Use the same idea as in Lemma 5.2.5 to show that if f is continuous on $[0,\infty)$, differentiable in $(0,\infty)$, and satisfies

$$\lim_{N \to \infty} \int_{N}^{Na} \frac{f(u)}{u} \, du = 0$$

for all a > 0, then

$$\lim_{\substack{\varepsilon \to 0 \\ N \to \infty}} \int_{\varepsilon}^{N} \frac{f(at) - f(t)}{t} \, dt = f(0) \log \frac{1}{a} \, .$$

5.2.12. Let Ω_o be an odd integrable function on \mathbf{S}^{n-1} and Ω_e an even function on \mathbf{S}^{n-1} that satisfies (5.2.24). Let f be a function supported in a ball B in \mathbf{R}^n . Prove that

(a) If $|f|\log^+ |f|$ is integrable over a ball *B*, then $T_{\Omega_o}(f)$ and $T_{\Omega_o}^{(**)}(f)$ are integrable over *B*.

(b) If $|f|(\log^+ |f|)^2$ is integrable over a ball *B*, then $T_{\Omega_e}(f)$ and $T_{\Omega_e}^{(**)}(f)$ are integrable over *B*.

[*Hint:* Use Exercise 1.3.7.]

5.3 Calderón–Zygmund Decomposition and Singular Integrals

5.2.13. ([324]) Let Ω be integrable on \mathbf{S}^{n-1} with mean value zero. Use Jensen's inequality to show that for some C > 0 and every radial function $f \in L^2(\mathbf{R}^n)$ we have

$$||T_{\Omega}(f)||_{L^2} \le C ||f||_{L^2}$$

This inequality subsumes that T_{Ω} is well defined on radial $L^2(\mathbf{R}^n)$ functions.

5.3 The Calderón–Zygmund Decomposition and Singular Integrals

The behavior of singular integral operators on $L^1(\mathbb{R}^n)$ is a more subtle issue than that on L^p for 1 . It turns out that singular integrals are not bounded from $<math>L^1$ to L^1 . See Example 5.1.3 and also Exercise 5.2.4. In this section we see that singular integrals map L^1 into the larger space $L^{1,\infty}$. This result strengthens their L^p boundedness.

5.3.1 The Calderón–Zygmund Decomposition

To make some advances in the theory of singular integrals, we need to introduce the Calderón–Zygmund decomposition. This is a powerful stopping-time construction that has many other interesting applications. We have already encountered an example of a stopping-time argument in Section 2.1.

Recall that a dyadic cube in \mathbf{R}^n is the set

$$[2^{k}m_{1}, 2^{k}(m_{1}+1)) \times \cdots \times [2^{k}m_{n}, 2^{k}(m_{n}+1)),$$

where $k, m_1, \ldots, m_n \in \mathbb{Z}$. Two dyadic cubes are either disjoint or related by inclusion.

Theorem 5.3.1. Let $f \in L^1(\mathbb{R}^n)$ and $\alpha > 0$. Then there exist functions g and b on \mathbb{R}^n such that

- (1) f = g + b.
- (2) $\|g\|_{L^1} \le \|f\|_{L^1}$ and $\|g\|_{L^{\infty}} \le 2^n \alpha$.
- (3) $b = \sum_j b_j$, where each b_j is supported in a dyadic cube Q_j . Furthermore, the cubes Q_k and Q_j are disjoint when $j \neq k$.

(4)
$$\int_{Q_j} b_j(x) \, dx = 0$$

- (5) $||b_j||_{L^1} \leq 2^{n+1} \alpha |Q_j|.$
- (6) $\sum_{j} |Q_{j}| \leq \alpha^{-1} ||f||_{L^{1}}.$