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Theorem 1.3.2. Let (X ,µ) and (Y,ν) be a pair of σ -finite measure spaces and let
0 < p0 < p1 ≤ ∞. Let T be a sublinear operator defined on Lp0(X) + Lp1(X) =
{ f0 + f1 : f j ∈ Lp j(X), j = 0,1} and taking values in the space of measurable func-
tions on Y . Assume that there exist A0,A1 < ∞ such that∥∥T ( f )

∥∥
Lp0 ,∞(Y ) ≤ A0

∥∥ f
∥∥

Lp0 (X)
for all f ∈ Lp0(X) , (1.3.5)∥∥T ( f )

∥∥
Lp1 ,∞(Y ) ≤ A1

∥∥ f
∥∥

Lp1 (X)
for all f ∈ Lp1(X) . (1.3.6)

Then for all p0 < p < p1 and for all f in Lp(X) we have the estimate∥∥T ( f )
∥∥

Lp(Y ) ≤ A
∥∥ f
∥∥

Lp(X)
, (1.3.7)

where
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p
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)1
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− 1
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1

p0
− 1

p1
1 . (1.3.8)

Proof. Assume first that p1 < ∞. Fix f a function in Lp(X) and α > 0. We split
f = f α

0 + f α
1 , where f α

0 is in Lp0 and f α
1 is in Lp1 . The splitting is obtained by

cutting | f | at height δα for some δ > 0 to be determined later. Set

f α
0 (x) =

{
f (x) for | f (x)|> δα,

0 for | f (x)| ≤ δα,

f α
1 (x) =

{
f (x) for | f (x)| ≤ δα,

0 for | f (x)|> δα.

It can be checked easily that f α
0 (the unbounded part of f ) is an Lp0 function and

that f α
1 (the bounded part of f ) is an Lp1 function. Indeed, since p0 < p, we have∥∥ f α

0
∥∥p0

Lp0 =
∫
| f |>δα

| f (x)|p| f (x)|p0−p dµ(x)≤ (δα)p0−p∥∥ f
∥∥p

Lp

and similarly, since p < p1,∥∥ f α
1
∥∥p1

Lp1 ≤ (δα)p1−p∥∥ f
∥∥p

Lp .

In view of the subadditivity property of T contained in (1.3.3) we obtain that

|T ( f )| ≤ |T ( f α
0 )|+ |T ( f α

1 )| ,

which implies

{y∈Y : |T ( f )(y)|>α}j {y∈Y : |T ( f α
0 )(y)|>α/2}∪{y∈Y : |T ( f α

1 )(y)|>α/2},

and therefore
dT ( f )(α)≤ dT ( f α

0 )(α/2)+dT ( f α
1 )(α/2) . (1.3.9)
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Hypotheses (1.3.5) and (1.3.6) together with (1.3.9) now give

dT ( f )(α)≤
Ap0

0
(α/2)p0

∫
| f |>δα

| f (x)|p0 dµ(x)+
Ap1

1
(α/2)p1

∫
| f |≤δα

| f (x)|p1 dµ(x).

In view of the last estimate and Proposition 1.1.4 (which can be used since Y is
σ -finite), we obtain that∥∥T ( f )

∥∥p
Lp ≤ p(2A0)

p0

∫
∞

0
α

p−1
α
−p0

∫
| f |>δα

| f (x)|p0 dµ(x)dα

+ p(2A1)
p1

∫
∞

0
α

p−1
α
−p1

∫
| f |≤δα

| f (x)|p1 dµ(x)dα

= p(2A0)
p0

∫
X
| f (x)|p0

∫ 1
δ
| f (x)|

0
α

p−1−p0 dα dµ(x)

+ p(2A1)
p1

∫
X
| f (x)|p1

∫
∞

1
δ
| f (x)|

α
p−1−p1 dα dµ(x)

=
p(2A0)

p0

p− p0

1
δ p−p0

∫
X
| f (x)|p0 | f (x)|p−p0 dµ(x)

+
p(2A1)

p1

p1− p
1

δ p−p1

∫
X
| f (x)|p1 | f (x)|p−p1 dµ(x)

= p
(
(2A0)

p0

p− p0

1
δ p−p0

+
(2A1)

p1

p1− p
δ

p1−p
)∥∥ f

∥∥p
Lp ,

and the convergence of the integrals in α is justified from p0 < p < p1, while the
interchange of the integrals (Fubini’s theorem) uses the hypothesis that (X ,µ) is a
σ -finite measure space. We pick δ > 0 such that

(2A0)
p0

1
δ p−p0

= (2A1)
p1δ

p1−p ,

and observe that the last displayed constant is equal to the pth power of the constant
in (1.3.8). We have therefore proved the theorem when p1 < ∞.

We now consider the case p1 = ∞. Write f = f α
0 + f α

1 , where

f α
0 (x) =

{
f (x) for | f (x)|> γα,

0 for | f (x)| ≤ γα,

f α
1 (x) =

{
f (x) for | f (x)| ≤ γα,

0 for | f (x)|> γα.

We have ∥∥T ( f α
1 )
∥∥

L∞ ≤ A1
∥∥ f α

1
∥∥

L∞ ≤ A1γα = α/2 ,


