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where we used the Lebesgue dominated convergence theorem to pass the limit in-
side, Lemma 5.2.5, and Remark 5.2.4. We were able to subtract cos(2πr|ξ |) from
the r integral in the previous calculation, since Ω has mean value zero over the
sphere. Also, the use of the dominated convergence theorem is justified from the
fact that the function
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lies in L1(Sn−1×Rn). Moreover, all the interchanges of integrals are well justified
by Fubini’s theorem. �

Corollary 5.2.6. Let Ω ∈ L1(Sn−1) have mean value zero. Then for almost all ξ ′ in
Sn−1 the integral ∫
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dθ (5.2.15)

converges absolutely. Moreover, the associated operator TΩ maps L2(Rn) to itself if
and only if
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Proof. To obtain the absolute convergence of the integral in (5.2.15) we integrate
over ξ ′ ∈ Sn−1 and we apply Fubini’s theorem. The assertion concerning the bound-
edness of TΩ on L2 is an immediate consequence of Proposition 5.2.3 and Theorem
2.5.10. �

There exist functions Ω in L1(Sn−1) with mean value zero such that the expres-
sions in (5.2.16) are equal to infinity; consequently, not all such Ω give rise to
bounded operators on L2(Rn). Observe, however, that for Ω odd i.e., Ω(−θ) =
−Ω(θ) for all θ ∈ Sn−1, (5.2.16) trivially holds, since log 1

|ξ ·θ | is even and its prod-

uct against an odd function must have integral zero over Sn−1. We conclude that
singular integrals TΩ with odd Ω are always L2 bounded.


