5 Singular Integrals of Convolution Type

$$\begin{split} &= \lim_{\substack{\epsilon \to 0 \\ N \to \infty}} \int_{\mathbf{R}^n} \varphi(\xi) \int_{\mathbf{S}^{n-1}} \Omega(\theta) \int_{\epsilon \le r \le N} \left(e^{-2\pi r |\xi| i \theta \cdot \xi'} - \cos(2\pi r |\xi|) \right) \frac{dr}{r} d\theta d\xi \\ &= \lim_{\substack{\epsilon \to 0 \\ N \to \infty}} \int_{\mathbf{R}^n} \varphi(\xi) \int_{\mathbf{S}^{n-1}} \Omega(\theta) \int_{2\pi |\xi| \epsilon}^{2\pi |\xi| N} \frac{e^{-ir\theta \cdot \xi'} - \cos(r)}{r} dr d\theta d\xi \\ &= \int_{\mathbf{R}^n} \varphi(\xi) \int_{\mathbf{S}^{n-1}} \Omega(\theta) \left(\log \frac{1}{|\xi' \cdot \theta|} - \frac{i\pi}{2} \operatorname{sgn}(\xi \cdot \theta) \right) d\theta d\xi, \end{split}$$

where we used the Lebesgue dominated convergence theorem to pass the limit inside, Lemma 5.2.5, and Remark 5.2.4. We were able to subtract $\cos(2\pi r |\xi|)$ from the *r* integral in the previous calculation, since Ω has mean value zero over the sphere. Also, the use of the dominated convergence theorem is justified from the fact that the function

$$(\theta,\xi)\mapsto |\Omega(\theta)| |\varphi(\xi)| \Big(\log rac{1}{|\xi'\cdot \theta|} + 4\Big)$$

lies in $L^1(\mathbf{S}^{n-1} \times \mathbf{R}^n)$. Moreover, all the interchanges of integrals are well justified by Fubini's theorem.

Corollary 5.2.6. Let $\Omega \in L^1(\mathbf{S}^{n-1})$ have mean value zero. Then for almost all ξ' in \mathbf{S}^{n-1} the integral

$$\int_{\mathbf{S}^{n-1}} \Omega(\theta) \log \frac{1}{|\xi' \cdot \theta|} d\theta$$
 (5.2.15)

converges absolutely. Moreover, the associated operator T_{Ω} maps $L^2(\mathbf{R}^n)$ to itself if and only if

$$\operatorname{ess.sup}_{\xi' \in \mathbf{S}^{n-1}} \left| \int_{\mathbf{S}^{n-1}} \Omega(\theta) \log \frac{1}{|\xi' \cdot \theta|} d\theta \right| < \infty.$$
 (5.2.16)

Proof. To obtain the absolute convergence of the integral in (5.2.15) we integrate over $\xi' \in \mathbf{S}^{n-1}$ and we apply Fubini's theorem. The assertion concerning the boundedness of T_{Ω} on L^2 is an immediate consequence of Proposition 5.2.3 and Theorem 2.5.10.

There exist functions Ω in $L^1(\mathbf{S}^{n-1})$ with mean value zero such that the expressions in (5.2.16) are equal to infinity; consequently, not all such Ω give rise to bounded operators on $L^2(\mathbf{R}^n)$. Observe, however, that for Ω odd i.e., $\Omega(-\theta) = -\Omega(\theta)$ for all $\theta \in \mathbf{S}^{n-1}$, (5.2.16) trivially holds, since $\log \frac{1}{|\xi \cdot \theta|}$ is even and its product against an odd function must have integral zero over \mathbf{S}^{n-1} . We conclude that singular integrals T_{Ω} with odd Ω are always L^2 bounded.

338