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We now turn to the proof of (5.1.31). It suffices to prove (5.1.31) for Schwartz
functions since, given f € L” there is a sequence ¢; € . such that || f — ¢;||z» — 0
as j — o and P, Q¢ lie in L. Taking Fourier transforms, we see that (5.1.31) is a
consequence of the identity
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and we equate (5.1.38) and (5.1.37).

The statement in the theorem about the almost everywhere convergence of
H@)(f) to H(f) is a consequence of (5.1.30), of the fact that the alleged conver-
gence holds for Schwartz functions, and of Theorem 2.1.14. Finally, the L? con-
vergence follows from the almost everywhere convergence and the Lebesgue domi-
nated convergence theorem in view of the validity of (5.1.35). U

5.1.4 The Riesz Transforms

In this section we fix n > 2 and we study an n-dimensional analogue of the Hilbert
transform. It turns out that there exist n operators in R”, called the Riesz transforms,
with properties analogous to those of the Hilbert transform on R.

To define the Riesz transforms, we first introduce tempered distributions W; on
R”, for 1 < j < n, as follows. For ¢ € .7 (R"), let
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One should check that indeed W; € .’/(R"). Observe that the normalization of W;
is similar to that of the Poisson kernel.



