5 Singular Integrals of Convolution Type

We now turn to the proof of (5.1.31). It suffices to prove (5.1.31) for Schwartz functions since, given $f \in L^p$ there is a sequence $\phi_j \in \mathscr{S}$ such that $||f - \phi_j||_{L^p} \to 0$ as $j \to \infty$ and P_{ε} , Q_{ε} lie in $L^{p'}$. Taking Fourier transforms, we see that (5.1.31) is a consequence of the identity

$$\left((-i\operatorname{sgn}\xi)e^{-2\pi|\xi|}\right)^{\vee}(x) = \frac{1}{\pi}\frac{x}{x^2+1}.$$
(5.1.36)

To prove (5.1.36) we write

$$\left((-i \operatorname{sgn} \xi) e^{-2\pi |\xi|} \right)^{\vee} (x) = \int_{-\infty}^{+\infty} e^{-2\pi |\xi|} (-i \operatorname{sgn} \xi) e^{2\pi i x \xi} d\xi$$

$$= 2 \int_{0}^{\infty} e^{-2\pi \xi} \sin(2\pi x \xi) d\xi$$

$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-\xi} \sin(x \xi) d\xi$$

$$= \frac{1}{\pi} \int_{0}^{\infty} (e^{-\xi})'' \sin(x \xi) d\xi$$

$$= -\frac{x}{\pi} \int_{0}^{\infty} (e^{-\xi})' \cos(x \xi) d\xi$$

$$= -\frac{x}{\pi} \left[-1 + x \int_{0}^{\infty} e^{-\xi} \sin(x \xi) d\xi \right]$$
(5.1.38)

and we equate (5.1.38) and (5.1.37).

The statement in the theorem about the almost everywhere convergence of $H^{(\varepsilon)}(f)$ to H(f) is a consequence of (5.1.30), of the fact that the alleged convergence holds for Schwartz functions, and of Theorem 2.1.14. Finally, the L^p convergence follows from the almost everywhere convergence and the Lebesgue dominated convergence theorem in view of the validity of (5.1.35).

5.1.4 The Riesz Transforms

In this section we fix $n \ge 2$ and we study an *n*-dimensional analogue of the Hilbert transform. It turns out that there exist *n* operators in \mathbb{R}^n , called the Riesz transforms, with properties analogous to those of the Hilbert transform on \mathbb{R} .

To define the Riesz transforms, we first introduce tempered distributions W_j on \mathbb{R}^n , for $1 \le j \le n$, as follows. For $\varphi \in \mathscr{S}(\mathbb{R}^n)$, let

$$\langle W_j, \varphi \rangle = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{|y| \ge \varepsilon} \frac{y_j}{|y|^{n+1}} \varphi(y) dy.$$

One should check that indeed $W_j \in \mathscr{S}'(\mathbf{R}^n)$. Observe that the normalization of W_j is similar to that of the Poisson kernel.

324