5 Singular Integrals of Convolution Type

This completes the induction. We have proved that H maps L^p to L^p when $p = 2^k$, k = 1, 2, ... Interpolation now gives that H maps L^p to L^p for all $p \ge 2$. Since $H^* = -H$, duality gives that H is also bounded on L^p for 1 .

The previous proof of the boundedness of the Hilbert transform provides us with some useful information about the norm of this operator on $L^p(\mathbf{R})$. Let us begin with the identity

$$\cot\frac{x}{2} = \cot x + \sqrt{1 + \cot^2 x},$$

valid for $0 < x \leq \frac{\pi}{2}$. If $c_p \leq \cot \frac{\pi}{2p}$, then (5.1.27) gives that

$$c_{2p} \le c_p + \sqrt{c_p^2 + 1} \le \cot \frac{\pi}{2p} + \sqrt{1 + \cot^2 \frac{\pi}{2p}} = \cot \frac{\pi}{2 \cdot 2p},$$

and since $1 = \cot \frac{\pi}{4} = \cot \frac{\pi}{2\cdot 2}$, we obtain by induction that the numbers $\cot \frac{\pi}{2p}$ are indeed bounds for the norm of H on L^p when $p = 2^k$, k = 1, 2, ... Duality now gives that the numbers $\cot \frac{\pi}{2p'} = \tan \frac{\pi}{2p}$ are bounds for the norm of H on L^p when $p = \frac{2^k}{2^{k-1}}$, k = 1, 2, ... These bounds allow us to derive good estimates for the norm $||H||_{L^p \to L^p}$ as $p \to 1$ and $p \to \infty$. Indeed, since $\cot \frac{\pi}{2p} \le p$ when $p \ge 2$, the Riesz-Thorin interpolation theorem gives that $||H||_{L^p \to L^p} \le 2p$ for $2 \le p < \infty$ and by duality $||H||_{L^p \to L^p} \le \frac{2p}{p-1}$ for 1 . This completes the proof which is worth comparing with that of Theorem 4.1.7.

Remark 5.1.8. The numbers $\cot \frac{\pi}{2p}$ for $2 \le p < \infty$ and $\tan \frac{\pi}{2p}$ for 1 are indeed equal to the norms of the Hilbert transform*H* $on <math>L^p(\mathbf{R})$. This requires a more delicate argument; see Exercise 5.1.12.

Remark 5.1.9. We may wonder what happens when p = 1 or $p = \infty$. The Hilbert transform of $\chi_{[a,b]}$ computed in Example 5.1.3 is easily seen to be unbounded and not integrable, since it behaves like 1/|x| as $x \to \infty$. This behavior near infinity suggests that the Hilbert transform may map L^1 to $L^{1,\infty}$. This is indeed the case, but this will not be shown until Section 5.3.

We now introduce the maximal Hilbert transform.

Definition 5.1.10. The maximal Hilbert transform is the operator

$$H^{(*)}(f)(x) = \sup_{\varepsilon > 0} \left| H^{(\varepsilon)}(f)(x) \right|$$
 (5.1.28)

defined for all f in L^p , $1 \le p < \infty$. For such f, $H^{(\varepsilon)}(f)$ is well defined as a convergent integral by Hölder's inequality. Hence $H^{(*)}(f)$ makes sense for $f \in L^p(\mathbf{R})$, although for some values of x, $H^{(*)}(f)(x)$ may be infinite.

Example 5.1.11. Using the result of Example 5.1.4, we obtain that

$$H^{(*)}(\boldsymbol{\chi}_{[a,b]})(x) = \frac{1}{\pi} \left| \log \frac{|x-a|}{|x-b|} \right|.$$
 (5.1.29)