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be the symbol of the Hilbert transform. We have
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Averaging (5.1.25) and (5.1.26) we obtain
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But the last displayed expression is equal to
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in view of the identity
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which is valid for all (§,1) € R?\ {(0,0)} for the function m(£) = —isgn&.

Having established (5.1.23), we can easily obtain L? bounds for H when p = 2k
is a power of 2. We already know that H is bounded on L” with norm one when
p =2Fand k = 1. Suppose that H is bounded on L” with bound ¢ for p = 2% for
some k € Z™. Then for a nonzero real-valued function f in ;> we have
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Dividing by || f]|;2» # 0 and using that ||H(f)]||;2» < o, we obtain that
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If follows that
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and from this we conclude that H is bounded on L?” with bound

cp <cptafertl. (5.1.27)



