- (b) Use part (a) to show that $\{Q_k\}_k$ is an approximate identity on **R** as $k \to \infty$.
- (c) Given a continuous function f on \mathbf{R} that vanishes outside the interval [0,1], show that $f * Q_k$ converges to f uniformly on [0,1] as $k \to \infty$.
- (d) (Weierstrass) Prove that every continuous function on [0, 1] can be approximated uniformly by polynomials.

[*Hint:* Part (a): Estimate the integral $\int_{|t| \le k^{-1/2}} Q_k(t) dt$ from below using the inequality $(1-t^2)^k \ge 1-kt^2$ for $|t| \le 1$. Part (d): Consider the function g(t) = f(t) - f(0) - t(f(1) - f(0)).]

1.2.12. Show that the Laplace transform $L(f)(x) = \int_0^\infty f(t)e^{-xt}dt$ maps $L^2(0,\infty)$ to itself with norm at most $\sqrt{\pi}$.

[*Hint*: Consider convolution with the kernel $\sqrt{t}e^{-t}$ on the group $L^2((0,\infty),\frac{dt}{t})$.]

1.2.13. ([62]) Let $F \ge 0$, $G \ge 0$ be measurable functions on the sphere \mathbf{S}^{n-1} and let $K \ge 0$ be a measurable function on [-1,1]. Prove that

$$\int_{\mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} F(\theta) G(\varphi) K(\theta \cdot \varphi) \, d\varphi \, d\theta \le C \|F\|_{L^p(\mathbf{S}^{n-1})} \|G\|_{L^{p'}(\mathbf{S}^{n-1})},$$

where $1 \le p \le \infty$, $\theta \cdot \varphi = \sum_{j=1}^n \theta_j \varphi_j$ and $C = \int_{\mathbb{S}^{n-1}} K(\theta \cdot \varphi) d\varphi$, which is independent of θ . Moreover, show that C is the best possible constant in the preceding inequality. Using duality, compute the norm of the linear operator

$$F(\theta) \mapsto \int_{\mathbf{S}^{n-1}} F(\mathbf{\varphi}) K(\theta \cdot \mathbf{\varphi}) d\mathbf{\varphi}$$

from $L^p(\mathbf{S}^{n-1})$ to itself.

Hint: Observe that $\int_{\mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} F(\theta) G(\varphi) K(\theta \cdot \varphi) d\varphi d\theta$ is bounded by the quantity

$$\left\{ \int_{\mathbf{S}^{n-1}} \left[\int_{\mathbf{S}^{n-1}} F(\theta) K(\theta \cdot \varphi) d\theta \right]^p d\varphi \right\}^{\frac{1}{p}} \|G\|_{L^{p'}(\mathbf{S}^{n-1})}.$$

Apply Hölder's inequality to the functions F and 1 with respect to the measure $K(\theta \cdot \varphi) d\theta$ to deduce that $\int_{\mathbb{S}^{n-1}} F(\theta) K(\theta \cdot \varphi) d\theta$ is controlled by

$$\left(\int_{\mathbf{S}^{n-1}} F(\theta)^p K(\theta \cdot \varphi) d\theta\right)^{1/p} \left(\int_{\mathbf{S}^{n-1}} K(\theta \cdot \varphi) d\theta\right)^{1/p'}.$$

Use Fubini's theorem to bound the latter by

$$||F||_{L^p(\mathbf{S}^{n-1})}||G||_{L^{p'}(\mathbf{S}^{n-1})}\int_{\mathbf{S}^{n-1}}K(\theta\cdot\varphi)\,d\varphi.$$

Note that equality is attained if and only if both *F* and *G* are constants.