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where we used Theorem 4.3.14 in the penultimate inequality and estimate (4.3.45)
in the last inequality. Since the last estimate we obtained is independent of L € Z,
letting L — oo and applying Fatou’s lemma, we obtain the conclusion (4.3.44) for
n =2. When n > 3 the idea of the proof is similar, but the notation a bit more
cumbersome. (]

Exercises

4.3.1. Let oo > 0 and ¢ € €, equal to 0 on B(0, ) and 1 on B(0, 1 7)¢. Prove that

@(&)(1—|&)% is in .#,(R") if and only if (p(é)(l —|&N¥ isin /// H(RY).
[Hint.' Use that smooth functions with compact support lie in .#), (R")]

4.3.2. The purpose of this exercise is to introduce distributions on the torus. The
set of test functions on the torus is ¢~ (T") equipped with the following topology.
Given fj, f in €= (T"), we say that f; — f in €*(T") if

[0%f; = 0% f|| ooy 2 O s j o0, Va

Under this notion of convergence, ¢ (T") is a topological vector space with topol-
ogy induced by the family of seminorms py (@) = sup,c [(d%f)(x)|, where o



