b is in $\mathcal{M}_p(\mathbb{R}^n)$, since such a conclusion would depend on the values of *b* on the integer lattice, which is a set of measure zero. However, a converse can be formulated if we assume that for all R > 0, the sequences $\{b(m/R)\}_{m \in \mathbb{Z}^n}$ are in $\mathcal{M}_p(\mathbb{Z}^n)$ uniformly in *R*. Then we obtain that $b(\xi/R)$ is in $\mathcal{M}_p(\mathbb{R}^n)$ uniformly in R > 0, which is equivalent to saying that $b \in \mathcal{M}_p(\mathbb{R}^n)$, since dilations of multipliers on \mathbb{R}^n do not affect their norms (see Proposition 2.5.14). These remarks can be precisely expressed in the following theorem.

Theorem 4.3.10. Suppose that $b(\xi)$ is a bounded function defined on \mathbb{R}^n which is Riemann integrable over any cube. Suppose that the sequences $\{b(\frac{m}{R})\}_{m \in \mathbb{Z}^n}$ are in $\mathcal{M}_p(\mathbb{Z}^n)$ uniformly in R > 0 for some $1 . Then b is in <math>\mathcal{M}_p(\mathbb{R}^n)$ and we have

$$\|b\|_{\mathscr{M}_{p}(\mathbf{R}^{n})} \leq \sup_{R>0} \left\|\{b(\frac{m}{R})\}_{m\in\mathbf{Z}^{n}}\right\|_{\mathscr{M}_{p}(\mathbf{Z}^{n})}.$$
(4.3.14)

Proof. Suppose that *f* and *g* are smooth functions with compact support on \mathbb{R}^n . Then there is an $R_0 > 0$ such that for $R \ge R_0$, the functions $x \mapsto f(Rx)$ and $x \mapsto g(Rx)$ are supported in $[-1/2, 1/2]^n$. We define periodic functions

$$F_R(x) = \sum_{k \in \mathbb{Z}^n} f(R(x-k))$$
 and $G_R(x) = \sum_{k \in \mathbb{Z}^n} g(R(x-k))$

on \mathbf{T}^n . Observe that the *m*th Fourier coefficient of F_R is $\widehat{F_R}(m) = R^{-n}\widehat{f}(m/R)$ and that of G_R is $\widehat{G_R}(m) = R^{-n}\widehat{g}(m/R)$.

Now for $R \ge R_0$ we have

$$\begin{aligned} \left| \sum_{m \in \mathbb{Z}^{n}} b(m/R) \widehat{f}(m/R) \overline{g}(m/R) \text{ Volume } \left(\frac{m}{R} + [0, \frac{1}{R}]^{n} \right) \right| \qquad (4.3.15) \\ &= \left| R^{n} \sum_{m \in \mathbb{Z}^{n}} b(m/R) \widehat{F_{R}}(m) \overline{\widehat{G_{R}}(m)} \right| \\ &= \left| R^{n} \int_{\mathbb{T}^{n}} \left(\sum_{m \in \mathbb{Z}^{n}} b(m/R) \widehat{F_{R}}(m) e^{2\pi i m \cdot x} \right) \overline{G_{R}(x)} dx \right| \\ &\leq R^{n} \left\| \left\{ b(m/R) \right\}_{m} \right\|_{\mathscr{M}_{p}(\mathbb{Z}^{n})} \left\| F_{R} \right\|_{L^{p}(\mathbb{T}^{n})} \left\| G_{R} \right\|_{L^{p'}(\mathbb{T}^{n})} \\ &\leq \sup_{R>0} \left\| \left\{ b(m/R) \right\}_{m \in \mathbb{Z}^{n}} \right\|_{\mathscr{M}_{p}(\mathbb{Z}^{n})} R^{n} \left\| F_{R} \right\|_{L^{p}(\mathbb{R}^{n})} \left\| G_{R} \right\|_{L^{p'}(\mathbb{R}^{n})} \\ &= \sup_{R>0} \left\| \left\{ b(m/R) \right\}_{m \in \mathbb{Z}^{n}} \left\| \mathscr{M}_{p}(\mathbb{Z}^{n}) \right\| f \right\|_{L^{p}(\mathbb{R}^{n})} \left\| g \right\|_{L^{p'}(\mathbb{R}^{n})}. \end{aligned}$$

Since *b* is bounded and Riemann integrable over any cube in \mathbb{R}^n , the function $b(\xi)\widehat{f}(\xi)\overline{\widehat{g}(\xi)}$ is Riemann integrable over \mathbb{R}^n . The expressions in (4.3.15) are sums associated with the partition $\{\frac{m}{R} + [0, \frac{1}{R}]^n\}_{m \in \mathbb{Z}^n}$ of \mathbb{R}^n which tend to

$$\left|\int_{\mathbf{R}^n} b(\xi) \widehat{f}(\xi) \overline{\widehat{g}(\xi)} d\xi\right|$$