

Fig. 1.2 The Fejér kernel F_5 plotted on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Example 1.2.18. On the circle group T^1 let

$$F_N(t) = \sum_{j=-N}^N \left(1 - \frac{|j|}{N+1} \right) e^{2\pi i j t} = \frac{1}{N+1} \left(\frac{\sin(\pi(N+1)t)}{\sin(\pi t)} \right)^2.$$
(1.2.27)

To check the previous equality we use that

$$\sin^2(x) = (2 - e^{2ix} - e^{-2ix})/4,$$

and we carry out the calculation. F_N is called the *Fejér kernel*. See Figure 1.2. To see that the sequence $\{F_N\}_N$ is an approximate identity, we check conditions (i), (ii), and (iii) in Definition 1.2.15. Property (iii) follows from the expression giving F_N in terms of sines, while property (i) follows from the expression giving F_N in terms of exponentials. Property (ii) is identical to property (i), since F_N is nonnegative.

Next comes the basic theorem concerning approximate identities.

Theorem 1.2.19. Let k_{ε} be an approximate identity on a locally compact group G with left Haar measure λ .

(1) If f lies in $L^p(G)$ for $1 \le p < \infty$, then $||k_{\varepsilon} * f - f||_{L^p(G)} \to 0$ as $\varepsilon \to 0$.

(2) Let f be a function in $L^{\infty}(G)$ that is uniformly continuous on a subset K of G, in the sense that for all $\delta > 0$ there is a neighborhood V of the identity element such that for all $x \in K$ and $y \in V$ we have $|f(y^{-1}x) - f(x)| < \delta$. Then we have that $||k_{\varepsilon} * f - f||_{L^{\infty}(K)} \to 0$ as $\varepsilon \to 0$. In particular, if f is bounded and continuous at a point $x_0 \in G$, then $(k_{\varepsilon} * f)(x_0) \to f(x_0)$ as $\varepsilon \to 0$.

Proof. We start with the case $1 \le p < \infty$. We recall that continuous functions with compact support are dense in L^p of locally compact Hausdorff spaces equipped with measures arising from nonnegative linear functionals; see [152, Theorem 12.10]. For a continuous function g supported in a compact set L we have we have $|g(h^{-1}x) - g(x)|^p \le (2||g||_{L^{\infty}})^p \chi_{W^{-1}L}$ for h in a relatively compact neighborhood

1 L^p Spaces and Interpolation

W of the identity element e. By the Lebesgue dominated convergence theorem we obtain

$$\int_{G} |g(h^{-1}x) - g(x)|^p d\lambda(x) \to 0$$
(1.2.28)

as $h \to e$. Now approximate a given f in $L^p(G)$ by a continuous function with compact support g to deduce that

$$\int_{G} |f(h^{-1}x) - f(x)|^{p} d\lambda(x) \to 0 \qquad \text{as} \qquad h \to e.$$
(1.2.29)

Because of (1.2.29), given a $\delta > 0$ there exists a neighborhood V of e such that

$$h \in V \implies \int_{G} |f(h^{-1}x) - f(x)|^{p} d\lambda(x) < \left(\frac{\delta}{2c}\right)^{p}, \qquad (1.2.30)$$

where *c* is the constant that appears in Definition 1.2.15 (i). Since k_{ε} has integral one for all $\varepsilon > 0$, we have

$$\begin{aligned} (k_{\varepsilon} * f)(x) - f(x) &= (k_{\varepsilon} * f)(x) - f(x) \int_{G} k_{\varepsilon}(y) d\lambda(y) \\ &= \int_{G} (f(y^{-1}x) - f(x))k_{\varepsilon}(y) d\lambda(y) \\ &= \int_{V} (f(y^{-1}x) - f(x))k_{\varepsilon}(y) d\lambda(y) \\ &+ \int_{V^{c}} (f(y^{-1}x) - f(x))k_{\varepsilon}(y) d\lambda(y). \end{aligned}$$
(1.2.31)

Now take L^p norms in x in (1.2.31). In view of (1.2.30),

$$\begin{split} \left| \int_{V} (f(y^{-1}x) - f(x))k_{\varepsilon}(y) d\lambda(y) \right\|_{L^{p}(G,d\lambda(x))} \\ &\leq \int_{V} \left\| f(y^{-1}x) - f(x) \right\|_{L^{p}(G,d\lambda(x))} |k_{\varepsilon}(y)| d\lambda(y) \qquad (1.2.32) \\ &< \int_{V} \frac{\delta}{2c} |k_{\varepsilon}(y)| d\lambda(y) \leq \frac{\delta}{2}, \end{split}$$

while

$$\left\| \int_{V^c} (f(y^{-1}x) - f(x))k_{\varepsilon}(y) d\lambda(y) \right\|_{L^p(G,d\lambda(x))} \leq \int_{V^c} 2\|f\|_{L^p(G)} |k_{\varepsilon}(y)| d\lambda(y) < \frac{\delta}{2},$$
(1.2.33)

provided we have that

$$\int_{V^c} |k_{\varepsilon}(x)| d\lambda(x) < \frac{\delta}{4\left(\left\|f\right\|_{L^p} + 1\right)}.$$
(1.2.34)

28

1.2 Convolution and Approximate Identities

Choose $\varepsilon_0 > 0$ such that (1.2.34) is valid for $\varepsilon < \varepsilon_0$ by property (iii). Now (1.2.32) and (1.2.33) imply the required conclusion.

The case $p = \infty$ follows similarly. Let *f* be a bounded function on *G* that is uniformly continuous on *K*. Given $\delta > 0$, there is a neighborhood *V* of *e* such that, whenever $y \in V$ and $x \in K$ we have

$$|f(y^{-1}x) - f(x)| < \frac{\delta}{2c}, \qquad (1.2.35)$$

where *c* is as in Definition 1.2.15 (i). By property (iii) in Definition 1.2.15, there is an $\varepsilon_0 > 0$ such that for $0 < \varepsilon < \varepsilon_0$ we have

$$\int_{V^c} |k_{\varepsilon}(\mathbf{y})| d\lambda(\mathbf{y}) < \frac{\delta}{4\left(\|f\|_{L^{\infty}(G)} + 1\right)}.$$
(1.2.36)

Using (1.2.35) and (1.2.36), we deduce that

$$\begin{split} \sup_{x \in K} &|(k_{\varepsilon} * f)(x) - f(x)| \\ &\leq \int_{V} |k_{\varepsilon}(y)| \sup_{x \in K} |f(y^{-1}x) - f(x)| d\lambda(y) + \int_{V^{c}} |k_{\varepsilon}(y)| \sup_{x \in K} |f(y^{-1}x) - f(x)| d\lambda(y) \\ &\leq c \frac{\delta}{2c} + \frac{\delta}{4\left(\|f\|_{L^{\infty}(G)} + 1\right)} 2\|f\|_{L^{\infty}(G)} \leq \delta. \end{split}$$

This shows that $k_{\varepsilon} * f$ converge uniformly to f on K as $\varepsilon \to 0$. In particular, if $K = \{x_0\}$ and f is bounded and continuous at x_0 , we have $(k_{\varepsilon} * f)(x_0) \to f(x_0)$. \Box

Remark 1.2.20. Observe that if Haar measure satisfies (1.2.12), then the conclusion of Theorem 1.2.19 also holds for $f * k_{\varepsilon}$.

A simple modification in the proof of Theorem 1.2.19 yields the following variant, which presents a significant difference only when a = 0.

Theorem 1.2.21. Let k_{ε} be a family of functions on a locally compact group G that satisfies properties (i) and (iii) of Definition 1.2.15 and also

$$\int_G k_{\varepsilon}(x) \, d\lambda(x) = a$$

for some fixed $a \in \mathbb{C}$ and for all $\varepsilon > 0$. Let $f \in L^p(G)$ for some $1 \leq p \leq \infty$.

(a) If $1 \le p < \infty$, then $||k_{\varepsilon} * f - af||_{L^{p}(G)} \to 0$ as $\varepsilon \to 0$.

(b) If $p = \infty$ and f is uniformly continuous on a subset K of G, in the sense that for any $\delta > 0$ there is a neighborhood V of the identity element of G such that $\sup_{x \in K} \sup_{y \in V} |f(y^{-1}x) - f(x)| \le \delta$, then we have that $||k_{\varepsilon} * f - af||_{L^{\infty}(K)} \to 0$ as $\varepsilon \to 0$.