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4.1.8. The beta function is defined in Appendix A.2. Derive the identity
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and show that the function Kg (x) = ¥j,y <z (1— ‘%)aezmm'x satisfies (4.1.17).
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[Hint: Taket=1— "Z—f and change variables s =

in the displayed identity.]

4.2 A. E. Divergence of Fourier Series and Bochner—Riesz means

We saw in Proposition 3.4.6 that the Fourier series of a continuous function may
diverge at a point. As expected, the situation can only get worse as the functions
get worse. In this section we present an example, due to A. N. Kolmogorov, of an
integrable function on T! whose Fourier series diverges almost everywhere. We also
prove an analogous result for the Bochner—Riesz means at the critical index.

4.2.1 Divergence of Fourier Series of Integrable Functions

It is natural to start our investigation with the case n = 1. We begin with the follow-
ing important result:

Theorem 4.2.1. There exists an integrable function on the circle T' whose Fourier
series diverges almost everywhere.

Proof. The proof of this theorem is a bit involved, and we need a sequence of lem-
mas, which we prove first.

Lemma 4.2.2. (Kronecker) Suppose that N € " and
{x1,x2, ..., xy, 1}

is a linearly independent set over the rationals. Then for any € > 0 and any complex
numbers 21,22,...,2y with |z;| = 1, there exists an integer L € Z such that

le*ilxi —zi| < € forall 1< j<N.

Proof. Suppose that the assertion claimed is false. Then there is an € > 0 and com-
plex numbers z; = ™%, j=1,...,N, with 0 < 6; < 1, such that

{mxi(mod 1),...,mxy(mod 1)) : me Z}NB((64,...,6y),€) =0,



