for all $x \in \mathbf{T}^n$. We show that the family $\{L^{z,R}\}_{R>0}$ is an approximate identity on \mathbf{T}^n when $\text{Re } z > \frac{n-1}{2}$; on this see the related Exercise 3.1.3. Obviously, using (4.1.19) we have that

$$\int_{\mathbf{T}^n} |L^{z,R}(x)| \, dx = \int_{\mathbf{R}^n} |K^z(y)| \, dy = C''(n, \operatorname{Re} z) e^{10|\operatorname{Im} z|^2} < \infty \tag{4.1.20}$$

for some constant C''(n, Re z), and also

$$\int_{\mathbf{T}^n} L^{z,R}(x) \, dx = \int_{\mathbf{R}^n} K^z(y) \, dy = m_z(0) = 1$$

for all R > 0 when $\text{Re } z > \frac{n-1}{2}$. Moreover, for $\delta < \frac{1}{2}$ using (4.1.19) we have

$$\int_{\delta \leq \sup_{j} |x_{j}| \leq \frac{1}{2}} \left| L^{z,R}(x) \right| dx \leq \frac{C_{n,z}}{R^{\operatorname{Re} z - \frac{n-1}{2}}} \int_{\delta \leq \sup_{j} |x_{j}| \leq \frac{1}{2}} \sum_{\ell \in \mathbb{Z}^{n}} \frac{1}{|x + \ell|^{n + \operatorname{Re} z - \frac{n-1}{2}}} dx \to 0,$$

thus the integral of $L^{z,R}$ over $[-1/2,1/2]^n \setminus [-\delta,\delta]^n$ tends to zero as $R \to \infty$. Using Theorem 1.2.19, we obtain these conclusions for $\text{Re } z > \frac{n-1}{2}$:

- (a) For $f \in L^1(\mathbf{T}^n)$, $B_R^z(f)$ converge to f in L^1 as $R \to \infty$.
- (b) For f continuous on \mathbf{T}^n , $B_R^z(f)$ converge to f uniformly as $R \to \infty$.

We turn to the corresponding results for 1 . We have that

$$\operatorname{Re} z > \frac{n-1}{2} \implies \sup_{R>0} \|B_R^z\|_{L^1(\mathbf{T}^n) \to L^1(\mathbf{T}^n)} = C''(n, \operatorname{Re} z) e^{10|\operatorname{Im} z|^2}$$
 (4.1.21)

$$\operatorname{Re} z = 0 \implies \sup_{R > 0} \|B_R^z\|_{L^2(\mathbf{T}^n) \to L^2(\mathbf{T}^n)} = \|m_z\|_{L^\infty} = 1.$$
 (4.1.22)

The family of operators $f \mapsto B_R^z(f)$ is of admissible growth for all Re $z \ge 0$, since for all measurable subsets A, B of \mathbf{T}^n we have

$$\left| \int_{\mathbf{T}^n} B_R^z(\chi_A) \chi_B \, dx \right| = \left| \sum_{k \in \mathbf{Z}^n} \widehat{\chi_A}(\frac{k}{R}) m^z(k) \overline{\widehat{\chi_B}(k)} \right| \leq \sum_{|k| \leq R} 1 \leq C_n R^n \,,$$

thus condition (1.3.23) holds. Moreover, hypothesis (1.3.24) of Theorem 1.3.7 holds in view of (4.1.21) and (4.1.22). Applying Theorem 1.3.7 (or rather Exercise 1.3.4 in which the strip $[0,1] \times \mathbf{R}$ is replaced by the more general strip $[a,b] \times \mathbf{R}$) we obtain that when $\alpha = \text{Re}\,z > (n-1)|\frac{1}{p}-\frac{1}{2}|$, we have

$$\sup_{R>0} \|B_R^{\alpha}\|_{L^p(\mathbf{T}^n)\to L^p(\mathbf{T}^n)} < \infty.$$

Finally, using Corollary 4.1.3, we deduce that $B_R^{\alpha}(f) \to f$ in $L^p(\mathbf{T}^n)$ as $R \to \infty$ for all $f \in L^p(\mathbf{T}^n)$.

The preceding result is sharp in the case p = 1 (Theorem 4.2.5). For this reason, the number $\alpha = (n-1)/2$ is referred to as the *critical index of Bochner–Riesz summability*.