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it would follow that Ar ≤ m, which contradicts our choice of r. Likewise, we elimi-
nate the case max(µ j1 , . . . ,µ jm)< max(µk1 , . . . ,µkm). We conclude that these num-
bers are equal. We can now continue the same reasoning using induction to conclude
that if µ j1 + · · ·+µ jm = µk1 + · · ·+µkm , then

{µk1 , . . . ,µkm}= {µ j1 , . . . ,µ jm} .

In view of this fact and of the permutations involved in the previous sum, we obtain
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since the functions ϕs are orthogonal in L2. Here
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To replace fN by f in (3.6.11), we recall our assumption that f ∈ L2(T1). We
observe that fN → f in L2 and thus fN j tends to f a.e. for some subsequence. Then
Fatou’s lemma and (3.6.11) imply for 1 < p < ∞∫ 1
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