3.6 Lacunary Series 231

it would follow that A" < m, which contradicts our choice of r. Likewise, we elimi-
nate the case max(i;,,..., M, ) < max(U,,...,H, ). We conclude that these num-
bers are equal. We can now continue the same reasoning using induction to conclude
that if g, +---+ W, = e, + -+ + L, then
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In view of this fact and of the permutations involved in the previous sum, we obtain
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which implies that || @] ;20 < (m!)ﬁ |@sl;2 for all s € {1,2,...,r}. Then we have
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since the functions ¢ are orthogonal in L. Here /7 (m!) 2. Since r can be chosen
to be [log, m] + 1 and m can be taken to be [5] + 1, for every fjy of the form (3.6.10),
we have now established the inequality
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To replace fv by fin (3. 6 11), we recall our assumption that f € L*(T'). We

observe that fy — f in L? and thus Jn; tends to f a.e. for some subsequence. Then
Fatou’s lemma and (3.6.11) imply for 1 <p<oo
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We conclude that
11l < eo@Fll oy, P22 (3.6.12)

By interpolation we obtain
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