226 3 Fourier Series

3.5.3. Let $L_1^1(\mathbf{T}^1)$ be the space of all differentiable functions on \mathbf{T}^1 whose derivatives are integrable. Obtain the inclusions $L_1^1(\mathbf{T}^1) \subseteq BV(\mathbf{T}^1) \subseteq L^\infty(\mathbf{T}^1)$ as follows: (a) If $f \in L_1^1(\mathbf{T}^1)$, then $Var(f) \leq \|f'\|_{L^1}$.

(b) If $f \in BV(\mathbf{T}^1)$, then $||f||_{L^{\infty}} \leq \text{Var}(f) + |f(0)|$.

3.5.4. (a) Let $a_k \ge 0$, $s_N = \sum_{k=-N}^N a_k$, and $\sigma_N = \frac{1}{N+1}(s_0 + \cdots + s_N)$. Suppose that $\sigma_N \to L < \infty$ as $N \to \infty$. Prove that $s_N \to L$ as $N \to \infty$.

(b) Apply the preceding result to show that if a complex-valued function h on \mathbf{T}^1 is continuous in a neighborhood of 0 and $\widehat{h}(m) \geq 0$ for all $m \in \mathbf{Z}$, then $h(0) \geq 0$ and $\sum_{m \in \mathbf{Z}} \widehat{h}(m) = h(0) < \infty$; i.e., the partial sums of the Fourier series of h converge at zero.

3.5.5. Let $h \in L^1(\mathbf{T}^1)$, $t_0 \in \mathbf{T}^1$, and $0 < \delta < 1/2$.

(a) Show that $(h * D_N)(t_0) \to L$ as $N \to \infty$ if and only if

$$\lim_{M\to\infty}\int_0^\delta \left(\frac{h(t_0-t)+h(t_0+t)}{2}-L\right)\frac{\sin(Mt)}{t}\,dt=0\,.$$

(b) Conclude that if an integrable function h on \mathbf{T}^1 satisfies

$$\int_0^{\delta} \frac{|h(t_0-t)+h(t_0+t)-2L|}{t} dt < \infty,$$

then $(h * D_N)(t_0) \to L$ as $N \to \infty$.

(c) In particular, if there are constants $C, \beta > 0$ with $\beta < 1$ such that for all t with $0 < t < \delta$ we have

$$|h(t_0-t)+h(t_0+t)-2h(t_0)| \leq Ct^{\beta}$$
,

then $(h*D_N)(t_0) \to h(t_0)$ as $N \to \infty$.

(d) If h is an odd function, then $(h*D_N)(0) \to 0$ as $N \to \infty$.

3.5.6. Let $f \in L^1(\mathbf{T}^1)$ and suppose that (a,b) is an interval in \mathbf{T}^1 . Then we have

$$\lim_{N\to\infty}\int_a^b(f*D_N)(t)\,dt=\int_a^bf(t)\,dt\,.$$

[*Hint*: Use Theorems 3.5.4 and 3.5.5 and the fact that the operator $f \mapsto f * D_N$ is self-adjoint.]

3.6 Lacunary Series and Sidon Sets

Lacunary series provide examples of 1-periodic functions on the line that possess certain remarkable properties.