3.4.4 Pointwise Convergence of the Dirichlet Means

We have seen that continuous functions may have divergent Fourier series. How about Lipschitz continuous functions? As it turns out, there is a more general condition that implies convergence for the Fourier series of functions that satisfy a certain integrability condition.

Theorem 3.4.7. (Dini) Let f be an integrable function on \mathbf{T}^{1}, let t_{0} be a point on \mathbf{T}^{1} for which $f\left(t_{0}\right)$ is defined and assume that

$$
\begin{equation*}
\int_{|t| \leq \frac{1}{2}} \frac{\left|f\left(t+t_{0}\right)-f\left(t_{0}\right)\right|}{|t|} d t<\infty \tag{3.4.9}
\end{equation*}
$$

Then $\left(D_{N} * f\right)\left(t_{0}\right) \rightarrow f\left(t_{0}\right)$ as $N \rightarrow \infty$.
(Tonelli) Let f be an integrable function on \mathbf{T}^{n} and let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{T}^{n}$. If f is defined at a and

$$
\begin{equation*}
\int_{\left|x_{1}\right| \leq \frac{1}{2}} \cdots \int_{\left|x_{n}\right| \leq \frac{1}{2}} \frac{|f(x+a)-f(a)|}{\left|x_{1}\right| \cdots\left|x_{n}\right|} d x_{n} \cdots d x_{1}<\infty \tag{3.4.10}
\end{equation*}
$$

then we have $\left(D_{N}^{n} * f\right)(a) \rightarrow f(a)$ as $N \rightarrow \infty$.
Proof. Since the one-dimensional result is contained in the multidimensional one, we prove the latter. Replacing $f(x)$ by $f(x+a)-f(a)$, we may assume that $a=0$ and $f(a)=0$. Using identities (3.1.15) and (3.1.14), we can write

$$
\begin{align*}
\left(D_{N}^{n} * f\right)(0) & =\int_{\mathbf{T}^{n}} f(-x) \prod_{j=1}^{n} \frac{\sin \left((2 N+1) \pi x_{j}\right)}{\sin \left(\pi x_{j}\right)} d x_{n} \cdots d x_{1} \tag{3.4.11}\\
& =\int_{\mathbf{T}^{n}} f(-x) \prod_{j=1}^{n}\left(\frac{\sin \left(2 N \pi x_{j}\right) \cos \left(\pi x_{j}\right)}{\sin \left(\pi x_{j}\right)}+\cos \left(2 N \pi x_{j}\right)\right) d x_{n} \cdots d x_{1}
\end{align*}
$$

Expand out the product to express the integrand as a sum of terms of the form

$$
\begin{equation*}
\left\{f(-x) \prod_{j \in I} \frac{\cos \left(\pi x_{j}\right)}{\sin \left(\pi x_{j}\right)}\right\} \prod_{j \in I} \sin \left(2 N \pi x_{j}\right) \prod_{k \in\{1,2, \ldots, n\} \backslash I} \cos \left(2 N \pi x_{k}\right), \tag{3.4.12}
\end{equation*}
$$

where I is a subset of $\{1,2, \ldots, n\}$; here we use the convention that the product over an empty set of indices is 1 . The function f_{I} inside the curly brackets in (3.4.12) is integrable on $\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$ except possibly in a neighborhood of the origin, since $\left|\sin \left(\pi x_{j}\right)\right| \geq 2\left|x_{j}\right|$ when $\left|x_{j}\right| \leq \frac{1}{2}$. But condition (3.4.10) with $a=0$ and $f(a)=0$ guarantees that f_{I} is also integrable in a neighborhood of the origin. Expressing the sines and cosines in (3.4.12) in terms of exponentials, we obtain that the integral of (3.4.12) over $\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$ is a finite linear combination of Fourier coefficients of f_{I} at the points $(\pm N, \ldots, \pm N) \in \mathbf{Z}^{n}$. Applying Lemma 3.3.1 yields that the expression in (3.4.11) tends to zero as $N \rightarrow \infty$.

