1.2 Convolution and Approximate Identities

$$(g*g)(x) = |B(0,1) \cap B(x,1)| = \int_{-\sqrt{1-\frac{1}{4}|x|^2}}^{+\sqrt{1-\frac{1}{4}|x|^2}} \left(2\sqrt{1-t^2} - |x|\right) dx$$

= $2 \arcsin\left(\sqrt{1-\frac{1}{4}|x|^2}\right) - |x|\sqrt{1-\frac{1}{4}|x|^2}$

when $x = (x_1, x_2)$ in \mathbb{R}^2 satisfies $|x| \le 2$, while (g * g)(x) = 0 if $|x| \ge 2$.

A calculation similar to that in Remark 1.2.7 yields that

$$\|f * g\|_{L^{1}(G)} \le \|f\|_{L^{1}(G)} \|g\|_{L^{1}(G)},$$
 (1.2.6)

that is, the convolution of two integrable functions is also an integrable function with L^1 norm less than or equal to the product of the L^1 norms.

Proposition 1.2.9. For all f, g, h in $L^1(G)$, the following properties are valid:

(1) f * (g * h) = (f * g) * h (associativity)
(2) f * (g + h) = f * g + f * h and (f + g) * h = f * h + g * h (distributivity)

Proof. The easy proofs are omitted.

Proposition 1.2.9 and (1.2.6) imply that $L^1(G)$ is a (not necessarily commutative) Banach algebra under the convolution product.

1.2.3 Basic Convolution Inequalities

The most fundamental inequality involving convolutions is the following.

Theorem 1.2.10. (*Minkowski's inequality*) Let $1 \le p \le \infty$. For f in $L^p(G)$ and g in $L^1(G)$ we have that g * f exists λ -a.e. and satisfies

$$\|g * f\|_{L^{p}(G)} \le \|g\|_{L^{1}(G)} \|f\|_{L^{p}(G)}.$$
(1.2.7)

Proof. Estimate (1.2.7) follows directly from Exercise 1.1.6. Here we give a direct proof. We may assume that 1 , since the cases <math>p = 1 and $p = \infty$ are simple. We first show that the convolution |g| * |f| exists λ -a.e. Indeed,

$$(|g|*|f|)(x) = \int_{G} |f(y^{-1}x)| |g(y)| d\lambda(y).$$
(1.2.8)

Apply Hölder's inequality in (1.2.8) with respect to the measure $|g(y)| d\lambda(y)$ to the functions $y \mapsto f(y^{-1}x)$ and 1 with exponents p and p' = p/(p-1), respectively. We obtain

$$(|g|*|f|)(x) \le \left(\int_{G} |f(y^{-1}x)|^{p} |g(y)| d\lambda(y)\right)^{\frac{1}{p}} \left(\int_{G} |g(y)| d\lambda(y)\right)^{\frac{1}{p'}}.$$
 (1.2.9)