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when x = (x1,x2) in R2 satisfies |x| ≤ 2, while (g∗g)(x) = 0 if |x| ≥ 2.
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that is, the convolution of two integrable functions is also an integrable function
with L1 norm less than or equal to the product of the L1 norms.

Proposition 1.2.9. For all f , g, h in L1(G), the following properties are valid:

(1) f ∗ (g∗h) = ( f ∗g)∗h (associativity)
(2) f ∗ (g+h) = f ∗g+ f ∗h and ( f +g)∗h = f ∗h+g∗h (distributivity)

Proof. The easy proofs are omitted. �

Proposition 1.2.9 and (1.2.6) imply that L1(G) is a (not necessarily commutative)
Banach algebra under the convolution product.

1.2.3 Basic Convolution Inequalities

The most fundamental inequality involving convolutions is the following.

Theorem 1.2.10. (Minkowski’s inequality) Let 1≤ p≤∞. For f in Lp(G) and g in
L1(G) we have that g∗ f exists λ -a.e. and satisfies∥∥g∗ f
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Proof. Estimate (1.2.7) follows directly from Exercise 1.1.6. Here we give a direct
proof. We may assume that 1 < p < ∞, since the cases p = 1 and p = ∞ are simple.
We first show that the convolution |g| ∗ | f | exists λ -a.e. Indeed,

(|g| ∗ | f |)(x) =
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Apply Hölder’s inequality in (1.2.8) with respect to the measure |g(y)|dλ (y) to the
functions y 7→ f (y−1x) and 1 with exponents p and p′ = p/(p−1), respectively. We
obtain
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