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Moreover, the Lp conclusion about H follows from the weak type (1,1) result and
the trivial L∞ inequality, in view of the Marcinkiewicz interpolation theorem (Theo-
rem 1.3.2). The required weak type (1,1) estimate for G on Rn is a consequence of
Lemma 3.4.5. Modulo the proof of this lemma, part (a) of the theorem is proved.

To prove the statement in part (b) observe that for f ∈ C ∞(Tn), which is a dense
subspace of L1, we have Fn

N ∗ f → f uniformly on Tn as N→ ∞, since the sequence
{FN}N is an approximate identity. Since by part (a), H maps L1(Tn) to L1,∞(Tn),
Theorem 2.1.14 yields that for f ∈ L1(Tn), Fn

N ∗ f → f a.e. �

We now prove the weak type (1,1) boundedness of G used earlier.

Lemma 3.4.5. Let Φ(x1, . . . ,xn) = (1+ |x1|2)−1 · · ·(1+ |xn|2)−1 and for ε > 0 let
Φε(x) = ε−nΦ(ε−1x). Then the maximal operator

G ( f ) = sup
ε>0
| f | ∗Φε

maps L1(Rn) to L1,∞(Rn).

Proof. Let I0 = [−1,1] and Ik = {t ∈ R : 2k−1 ≤ |t| ≤ 2k} for k = 1,2, . . . . Also, let
Ĩk be the convex hull of Ik, that is, the interval [−2k,2k]. For a2, . . . ,an fixed positive
numbers, let Ma2,...,an be the maximal operator obtained by averaging a function on
Rn over all products of closed intervals J1×·· ·× Jn containing a given point with

|J1|= 2a2 |J2|= · · ·= 2an |Jn|.

In view of Exercise 2.1.9(c), we have that Ma2,...,an maps L1 to L1,∞ with some
constant independent of the a j’s. (This is due to the nice doubling property of this
family of rectangles.) For a fixed ε > 0 we estimate the expression

(Φε ∗ | f |)(0) =
∫

Rn

| f (−εy)|dy
(1+ y2

1) · · ·(1+ y2
n)

.

Split Rn into n! regions of the form |y j1 | ≥ · · · ≥ |y jn |, where { j1, . . . , jn} is a per-
mutation of the set {1, . . . ,n} and y = (y1, . . . ,yn). By symmetry, we examine the
region where |y1| ≥ · · · ≥ |yn| which we split in finitely many regions R of the form
|y1| ≥ · · · ≥ |y`| ≥ 1≥ |y`+1| ≥ |yn|. Then for some constant C > 0 we have

∫
R

| f (−εy)|dy
(1+y2

1) · · ·(1+y2
n)
≤C

∞

∑
k1=0

k1

∑
k2=0
· · ·

k`−1

∑
kn=0

2−(2k1+···+2k`)
∫

Ik1×···×Ik`×In−`
0

| f (−εy)|dyn· · ·dy1,

and the last expression is trivially controlled by the corresponding expression, where
the Ik’s are replaced by the Ĩk’s. This, in turn, is controlled by

C′
∞

∑
k1=0

k1

∑
k2=0
· · ·

k`−1

∑
k`=0

2−(k1+···+k`)Mk1−k2,...,k1−k`,0,...,0( f )(0) . (3.4.8)
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Now set s2 = k1− k2, . . . ,s` = k1− k`, observe that s j ≥ 0, use that

2−(k1+···+k`) ≤ 2−
k1
2 2−

s2
2` · · ·2−

s`
2` ,

and change the indices of summation to estimate the expression in (3.4.8) by

C′′
∞

∑
k1=0

∞

∑
s2=0
· · ·

∞

∑
s`=0

2−
k1
2 2−

s2
2` · · ·2−

s`
2` Ms2,...,s`,0,...,0( f )(0) .

Argue similarly for other ` and all remaining regions |y j1 | ≥ · · · ≥ |y jn |. Finally,
translate to an arbitrary point x and take the supremum over ε > 0 to obtain that
G ( f )(x) is bounded by a finite sum of expressions of the form

C′′
∞

∑
s2=0
· · ·

∞

∑
s`=0

2−
s2
2n · · ·2−

s`
2n Ms′2,...,s

′
n
( f )(x)

where ` ≤ n and (s′2, . . . ,s
′
n) ranges over all permutations of (s2, . . . ,s`,0, . . . ,0).

Now use the fact that the maximal functions Ms′2,...,s
′
n

map L1 to L1,∞ uniformly in
s′2, . . . ,s

′
n and the result of Exercise 1.4.10 to obtain the desired conclusion for G . �

3.4.3 Pointwise Divergence of the Dirichlet Means

We now pass to the more difficult question of convergence of the square partial sums
of a Fourier series. It is natural to start our investigation with the class of continuous
functions. Do the partial sums of the Fourier series of continuous functions converge
pointwise? The following simple proposition warns about the behavior of partial
sums.

Proposition 3.4.6. (a) (duBois Reymond) There exists a continuous function f on
T1 whose partial sums diverge at a point. Precisely, for some point x0 ∈ T1 we have

limsup
N→∞

∣∣∣∣ ∑
m∈Z
|m j |≤N

f̂ (m)e2πix0m
∣∣∣∣= ∞ .

(b) There exists a continuous function F on Tn and x0 ∈ T1 such that the sequence

limsup
N→∞

∣∣∣∣ ∑
m∈Zn

|m j |≤N

F̂(m)e2πi(x0m1+x2m2+···+xnmn)

∣∣∣∣= ∞

for all x2, . . . ,xn in T1.


