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Moreover, the L? conclusion about 77 follows from the weak type (1, 1) result and
the trivial L™ inequality, in view of the Marcinkiewicz interpolation theorem (Theo-
rem 1.3.2). The required weak type (1, 1) estimate for & on R” is a consequence of
Lemma 3.4.5. Modulo the proof of this lemma, part (a) of the theorem is proved.
To prove the statement in part (b) observe that for f € €*°(T"), which is a dense
subspace of L', we have Fyi* f — f uniformly on T" as N — oo, since the sequence
{Fy}x is an approximate identity. Since by part (a), 2 maps L' (T") to L' (T"),
Theorem 2.1.14 yields that for f € L' (T"), Fit+ f — f a.e. O

We now prove the weak type (1,1) boundedness of ¢ used earlier.

Lemma 3.4.5. Let ®(xy,...,x,) = (1+ |x1|?) 7 - (14 |x,|?) ! and for € > 0 let
D¢ (x) = €7 "P (e~ 'x). Then the maximal operator

G(f) = sup|f] Pe

>0

maps L' (R") to L' (R").

Proof. Letly=[—1,1]and [ = {r € R: 271 <|r| <2F} fork=1,2,.... Also, let
I be the convex hull of I, that is, the interval [—2%,2%]. For ay, .. ., a, fixed positive
numbers, let M, . 4, be the maximal operator obtained by averaging a function on
R" over all products of closed intervals J; x - - X J,, containing a given point with

|J1‘ :2“2|J2| =... :2“"|Jn|,

constant independent of the a;’s. (This is due to the nice doubling property of this
family of rectangles.) For a fixed € > 0 we estimate the expression

|f(—ey)|dy
(14y]) - (1+y2)

(@exIf)©) = [

Split R into n! regions of the form |y; | > --- > |yj,|, where {ji,...,j,} is a per-
mutation of the set {1,...,n} and y = (y1,...,ys). By symmetry, we examine the
region where |y;| > - -+ > |y,| which we split in finitely many regions # of the form
[vi| > > |ye|l > 1> |yes1| > |yn|. Then for some constant C > 0 we have

/ M <Ci i ,__Ai127(2k|+m+2k1) / |f(—&y)|dy,---dy
2 (14y7) -+~ (14+33) k1=0ky=0  ky=0 '

I ><~~~><Ik(><lg4

1
and the last expression is trivially controlled by the corresponding expression, where
the I;’s are replaced by the I;;’s. This, in turn, is controlled by

o ki kp—y
cy Yy -}y 27 HOME ok —k0.0(F)(0). (3.4.8)
Ki=0ka=0 k=0
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Now set s = ki —ka,...,s) = ki — k¢, observe that s; > 0, use that

27(](] +tky) < 27%27 J
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and change the indices of summation to estimate the expression in (3.4.8) by

=)

ad KL% s
' Z Z Z 272073 ...07 Msz,“.,s/,O,M,O(f)(o)-
kl =0 852 =0 A'/:O

Argue similarly for other ¢ and all remaining regions |y; | > --- > |y;,|. Finally,
translate to an arbitrary point x and take the supremum over € > 0 to obtain that
4 (f)(x) is bounded by a finite sum of expressions of the form

- e N )
c” Z Z 2732 2"M§/2.4.4.x’ (f)(x)

n
so=0 sp=0

where ¢ < n and (s},...,s,

,s.) ranges over all permutations of (s2,...,s¢,0,...,0).

sh,...,s, and the result of Exercise 1.4.10 to obtain the desired conclusion for ¢. [J

3.4.3 Pointwise Divergence of the Dirichlet Means

We now pass to the more difficult question of convergence of the square partial sums
of a Fourier series. It is natural to start our investigation with the class of continuous
functions. Do the partial sums of the Fourier series of continuous functions converge
pointwise? The following simple proposition warns about the behavior of partial
sums.

Proposition 3.4.6. (a) (duBois Reymond) There exists a continuous function f on
T! whose partial sums diverge at a point. Precisely, for some point xy € T' we have

limsup Z Flm)e™om| = oo
N—poo meZ
mj|<N

(b) There exists a continuous function F on T" and xg € T! such that the sequence

limsup Z F(m)eZm(xoml Fxpmy e xamn) |
N—=reo | jezr
|mj|<N

forall xa,...,x, in T!.



