3.1 Fourier Coefficients

 $\mathbf{T}^n = [0, 1]^n$. This measure is still denoted by dx, while the measure of a set $A \subseteq \mathbf{T}^n$ is denoted by |A|. Translation invariance of Lebesgue measure and the periodicity of functions on \mathbf{T}^n imply that for all integrable functions f on \mathbf{T}^n , we have

$$\int_{\mathbf{T}^n} f(x) \, dx = \int_{[-1/2, 1/2]^n} f(x) \, dx = \int_{[a_1, 1+a_1] \times \dots \times [a_n, 1+a_n]} f(x) \, dx \tag{3.1.3}$$

for any real numbers a_1, \ldots, a_n . In view of periodicity, integration by parts on the torus does not produce boundary terms; given f, g continuously differentiable functions on \mathbf{T}^n we have

$$\int_{\mathbf{T}^n} \partial_j f(x) g(x) \, dx = -\int_{\mathbf{T}^n} \partial_j g(x) \, f(x) \, dx$$

Elements of \mathbb{Z}^n are denoted by $m = (m_1, \dots, m_n)$. For $m \in \mathbb{Z}^n$, we define the *total* size of *m* to be the number $|m| = (m_1^2 + \dots + m_n^2)^{1/2}$. Recall that for $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ in \mathbb{R}^n ,

$$x \cdot y = x_1 y_1 + \dots + x_n y_n$$

denotes the usual dot product. Finally, for $x \in \mathbf{T}^n$, |x| denotes the usual Euclidean norm of x. If we identify \mathbf{T}^n with $[-1/2, 1/2]^n$, then |x| can be interpreted as the distance of the element x from the origin, and then we have $0 \le |x| \le \sqrt{n}/2$ for all $x \in \mathbf{T}^n$.

Multi-indices are elements of $(\mathbf{Z}^+ \cup \{0\})^n$. For a multi-index $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)$, we denote the partial derivative $\partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} f$ by $\partial^{\alpha} f$. The spaces $\mathscr{C}^k(\mathbf{T}^n)$ of *continuously differentiable functions of order* k, where $k \in \mathbf{Z}^+$, are defined as the sets of functions $\boldsymbol{\varphi}$ for which $\partial^{\alpha} \boldsymbol{\varphi}$ exist and are continuous for all $|\boldsymbol{\alpha}| \leq k$. When k = 0 we set $\mathscr{C}^0(\mathbf{T}^n) = \mathscr{C}(\mathbf{T}^n)$ to be the space of continuous functions on \mathbf{T}^n . The space $\mathscr{C}^{\infty}(\mathbf{T}^n)$ of infinitely differentiable functions on \mathbf{T}^n is the intersection of all the $\mathscr{C}^k(\mathbf{T}^n)$. All of these spaces are contained in $L^p(\mathbf{T}^n)$, which are nested, with $L^1(\mathbf{T}^n)$ being the largest.

3.1.2 Fourier Coefficients

Definition 3.1.1. For a complex-valued function f in $L^1(\mathbf{T}^n)$ and m in \mathbf{Z}^n , we define

$$\widehat{f}(m) = \int_{\mathbf{T}^n} f(x) e^{-2\pi i m \cdot x} dx.$$
(3.1.4)

We call $\widehat{f}(m)$ the *m*th *Fourier coefficient* of *f*. We note that $\widehat{f}(\xi)$ is not defined for $\xi \in \mathbf{R}^n \setminus \mathbf{Z}^n$, since the function $x \mapsto e^{-2\pi i \xi \cdot x}$ is not 1-periodic in any coordinate and therefore not well defined on \mathbf{T}^n . For a finite Borel measure μ on \mathbf{T}^n and $m \in \mathbf{Z}^n$ the expression

$$\widehat{\mu}(m) = \int_{\mathbf{T}^n} e^{-2\pi i m \cdot x} d\mu \qquad (3.1.5)$$

is called the *m*th *Fourier coefficient* of μ .