for some constant C, while the corresponding integral containing ψ_3 has arbitrary decay in r in view of estimate (2.6.3) (or Proposition 2.6.4 when n = 1).

Exercises

2.6.1. Suppose that u is a real-valued \mathscr{C}^k function defined on the line that satisfies $|u^{(k)}(t)| \ge c_0 > 0$ for some $k \ge 2$ and all $t \in (a,b)$. Prove that for $\lambda \in \mathbb{R}^+$ we have

$$\left| \int_{a}^{b} e^{i\lambda u(t)} dt \right| \le 12 k (\lambda c_0)^{-1/k}$$

and that the same conclusion is valid when k = 1, provided u' is monotonic.

2.6.2. Show that if u' is not monotonic in part (c) of Proposition 2.6.7, then the conclusion may fail.

[*Hint:* Let $\varphi(t)$ be a real-valued smooth function that is equal to 2t on intervals $[2\pi k + \varepsilon_k, 2\pi(k + \frac{1}{2}) - \varepsilon_k]$ and equal to t on intervals $[2\pi(k + \frac{1}{2}) + \varepsilon_k, 2\pi(k + 1) - \varepsilon_k]$, where $0 \le k \le N$, for some $N \in \mathbb{Z}^+$. Show that the absolute value of the integral of $e^{i\varphi(t)}$ over the interval $[\varepsilon_0, 2\pi(N+1) - \varepsilon_N]$ tends to infinity as $N \to \infty$.]

2.6.3. Prove that the dependence on *k* of the constant in part (b) of Proposition 2.6.7 is indeed linear.

[*Hint*: Take $u(t) = t^k/k!$ over the interval (0, k!).]

- **2.6.4.** Follow the steps below to give an alternative proof of part (b) of Proposition 2.6.7. Assume that the statement is known for some $k \ge 2$ and some constant C(k) for all intervals [a,b] and all \mathscr{C}^k functions satisfying $u^{(k)} \ge 1$ on [a,b]. Fix a \mathscr{C}^{k+1} function u such that $u^{(k+1)} \ge 1$ on an interval [a,b]. Let c be the unique point at which the function $u^{(k+1)}$ attains its minimum in [a,b].
- (a) If $u^{(k)}(c) = 0$ for some $c \in (a,b)$, then for all $\delta > 0$ we have $u^{(k)}(t) \ge \delta$ in the complement of the interval $(c \delta, c + \delta)$ and derive the bound

$$\left| \int_a^b e^{i\lambda u(t)} dt \right| \leq 2C(k)(\lambda \delta)^{-1/k} + 2\delta.$$

(b) If $u^{(k)}(c) \neq 0$ for all $c \in (a,b)$, then we must have c = a. Obtain the bound

$$\left| \int_a^b e^{i\lambda u(t)} dt \right| \leq C(k) (\lambda \delta)^{-1/k} + \delta.$$

- (c) Choose a suitable δ to optimize and deduce the validity of the statement for k+1 with C(k+1)=2C(k)+2, hence $C(k)=3\cdot 2^{k-1}+2^k-2$, since C(1)=3.
- **2.6.5.** (a) Prove that for some constant C and all $\lambda \in \mathbf{R}$ and $\varepsilon \in (0,1)$ we have

$$\left| \int_{\varepsilon \le |t| \le 1} e^{i\lambda t} \, \frac{dt}{t} \right| \le C.$$

(b) Prove that for some $C' < \infty$, all $\lambda \in \mathbb{R}$, $k \in \mathbb{Z}^+$, and $\varepsilon \in (0,1)$ we have

$$\left| \int_{\varepsilon \le |t| \le 1} e^{i(\lambda t \pm t^k)} \frac{dt}{t} \right| \le C'.$$

(c) Show that there is a constant C'' such that for any $0 < \varepsilon < N < \infty$, for all ξ_1, ξ_2 in **R**, and for all integers $k \ge 2$, we have

$$\left| \int_{\varepsilon \le |s| \le N} e^{i(\xi_1 s + \xi_2 s^k)} \, \frac{ds}{s} \right| \le C''.$$

[*Hint*: Part (a): For $|\lambda|$ small use the inequality $|e^{i\lambda t} - 1| \le |\lambda t|$. If $|\lambda|$ is large, split the domains of integration into the regions $|t| \le |\lambda|^{-1}$ and $|t| \ge |\lambda|^{-1}$ and use integration by parts in the second case. Part (b): Write

$$\frac{e^{i(\lambda t \pm t^k)} - 1}{t} = e^{i\lambda t} \frac{e^{\pm it^k} - 1}{t} + \frac{e^{i\lambda t}}{t}$$

and use part (a). Part (c): When $\xi_1 = \xi_2 = 0$ it is trivial. If $\xi_2 = 0$, $\xi_1 \neq 0$, change variables $t = \xi_1 s$ and then split the domain of integration into the sets $|t| \leq 1$ and $|t| \geq 1$. In the interval over the set $|t| \leq 1$ apply part (b) and over the set $|t| \geq 1$ use integration by parts. In the case $\xi_2 \neq 0$, change variables $t = |\xi_2|^{1/k} s$ and split the domain of integration into the sets $|t| \geq 1$ and $|t| \leq 1$. When $|t| \leq 1$ use part (b) and in the case $|t| \geq 1$ use Corollary 2.6.8, noting that $\frac{d^k(\xi_1|\xi_2|^{-1/k}t \pm t^k)}{dt} = k! \geq 1$.

2.6.6. (a) Show that for all a > 0 and $\lambda > 0$ the following is valid:

$$\left| \int_0^{a\lambda} e^{i\lambda \log t} \, dt \right| \le a.$$

(b) Prove that there is a constant c > 0 such that for all $b, \lambda > 1$ we have

$$\left| \int_0^b e^{i\lambda t \log t} \, dt \right| \le \frac{c}{\sqrt{\lambda}}.$$

[*Hint*: Part (b): Consider the intervals $(0, \delta)$ and $[\delta, b)$ for some δ . Apply Proposition 2.6.7 with k = 1 on one of these intervals and with k = 2 on the other. Then choose a suitable δ .

2.6.7. Show that for all nonintegers $\gamma > 1$ there is a constant $C = C(\gamma) < \infty$ such that for all $\lambda, b > 0$ we have

$$\left| \int_0^b e^{i\lambda t^{\gamma}} dt \right| \leq \frac{C}{\lambda^{1/\gamma}}.$$

[*Hint*: On the interval $(0, \delta)$ apply Proposition 2.6.7 with $k = [\gamma] + 1$ and on the interval (δ, b) with $k = [\gamma]$. Then optimize by choosing $\delta = \lambda^{-1/\gamma}$.]